A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Proportional modulation of proliferation and motility under 2D compressive stress depends on mesenchymal phenotype. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor development is accompanied by strong physico-chemical modifications. Among them, compressive stress can emerge in both the epithelial and stromal compartments. Using a simple two-dimensional compression assay which consisted in placing an agarose weight on top of adherent cells, we studied the impact of compressive stress on cell proliferation and motility in different pancreatic cancer cell lines. We observed a proportional reduction of both proliferation and motility in all tested cell types, with genotypes displaying a more "mesenchymal" phenotype (high velocity-to-proliferation ratio) and others related to a more "epithelial" phenotype (low velocity-to-proliferation ratio). Moreover, "mesenchymal" cells seemed more sensitive to compression, a result that was further suggested by a TGF 1 induction of epithelial-to-mesenchymal transition. Finally, we measured that the change in cell proliferation was associated with a change in intracellular macromolecular crowding, which could modulate a plethora of biochemical reactions. Our results together suggest a mechanism in which all biochemical reactions related to proliferation and motility can be modulated by a change in macromolecular crowding, itself depending on the phenotype, leading to differential sensitivity to pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/s10189-025-00516-0DOI Listing

Publication Analysis

Top Keywords

proliferation motility
16
compressive stress
12
cell proliferation
8
velocity-to-proliferation ratio
8
macromolecular crowding
8
biochemical reactions
8
proliferation
5
proportional modulation
4
modulation proliferation
4
motility
4

Similar Publications