MADS transcription factors cooperate: complexities of complex formation.

J Exp Bot

Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble, France.

Published: April 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article comments on: A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors. Journal of Experimental Botany 1943–1954.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019057PMC
http://dx.doi.org/10.1093/jxb/ery099DOI Listing

Publication Analysis

Top Keywords

transcription factors
8
mads transcription
4
factors cooperate
4
cooperate complexities
4
complexities complex
4
complex formation
4
formation article
4
article comments
4
comments conserved
4
conserved leucine
4

Similar Publications

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism of (QJZ) for ameliorating renal damage in MRL/lpr mice.

Methods: With 6 female C57BL/6 mice as the normal control group, 30 female MRL/lpr mice were randomized into model group, QJZ treatment groups at low, moderate and high doses, and prednisone treatment group (6). After 8 weeks of treatment, the mice were examined for 24-h urine protein, creatinine and albumin levels, serum levels of IgG, complement 3 (C3), C4, anti-dsDNA, interferon γ (IFN‑γ) and interleukin 17 (IL-17).

View Article and Find Full Text PDF

Cancer is one of the major public health challenges worldwide, and the STAT3 signaling pathway is recognized as one of the most important signaling pathways in the progression of this disease. This pathway can increase the survival and proliferation of cancer cells and their resistance to treatment by regulating lipid and carbohydrate metabolism, apoptosis, and inflammatory processes. Therefore, STAT3 inhibition is considered an effective therapeutic approach in the fight against cancer.

View Article and Find Full Text PDF