Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low fertility limits crop production on acidic soils dominating much of the humid tropics. Biochar may be used as a soil enhancer, but little consensus exists on its effect on crop yield. Here we use a controlled, replicated and long-term field study in Sumatra, Indonesia, to investigate the longevity and mechanism of the effects of two contrasting biochars (produced from rice husk and cacao shell, and applied at dosages of 5 and 15tha) on maize production in a highly acidic Ultisol (pH3.6). Compared to rice husk biochar, cacao shell biochar exhibited a higher pH (9.8 vs. 8.4), CEC (197 vs. 20cmolkg) and acid neutralizing capacity (217 vs. 45cmolkg) and thus had a greater liming potential. Crop yield effects of cacao shell biochar (15tha) were also much stronger than those of rice husk biochar, and could be related to more favorable Ca/Al ratios in response to cacao shell biochar (1.0 to 1.5) compared to rice husk biochar (0.3 to 0.6) and nonamended plots (0.15 to 0.6). The maize yield obtained with the cacao shell biochar peaked in season 2, continued to have a good effect in seasons 3-4, and faded in season 5. The yield effect of the rice husk biochar was less pronounced and already faded from season 2 onwards. Crop yields were correlated with the pH-related parameters Ca/Al ratio, base saturation and exchangeable K. The positive effects of cocoa shell biochar on crop yield in this Ultisol were at least in part related to alleviation of soil acidity. The fading effectiveness after multiple growth seasons, possibly due to leaching of the biochar-associated alkalinity, indicates that 15tha of cocoa shell biochar needs to be applied approximately every third season in order to maintain positive effects on yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.03.380DOI Listing

Publication Analysis

Top Keywords

shell biochar
24
rice husk
20
cacao shell
20
crop yield
16
husk biochar
16
biochar
12
biochar crop
8
soil acidity
8
growth seasons
8
compared rice
8

Similar Publications

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.

View Article and Find Full Text PDF

The efficient handling of agricultural waste is rapidly gaining worldwide recognition. This study analyzes the impact of three distinct pyrolysis temperatures (250, 300, and 350 °C) on the physicochemical properties of the biochar produced from rice husk, sugarcane bagasse, and groundnut shells with a fixed pyrolysis time of 3 h. The influence of the pyrolysis temperature was assessed by calculating the biochar yield, electrical conductivity (EC), pH, proximate analysis, and ultimate analysis.

View Article and Find Full Text PDF

Mechanistic and practical insights into tetracycline degradation via 2D/2D N-doped biochar/carbon nitride-driven peroxymonosulfate activation: Toxicity mitigation and product analysis.

Environ Res

August 2025

College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China. Electronic address: xi

In this study, a rationally designed 2D/2D composite from N-doped biochar (NC) and S-doped graphitic carbon nitride (CNS) was developed for efficient peroxymonosulfate (PMS) activation toward tetracycline (TC) degradation. Peanut shell-derived NC produced via urea treatment showed both excellent conductivity and an advantageous 2D structural configuration. The strategic incorporation of NC within the CNS matrix to engineer 2D/2D architectures significantly enhances interfacial contact while establishing efficient electron transport pathways, thereby optimizing charge carrier dynamics through improved mobility and separation efficiency.

View Article and Find Full Text PDF

The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy.

View Article and Find Full Text PDF