98%
921
2 minutes
20
Parkinson's disease (PD) is a multi-factorial neurodegenerative disease. Abnormal α-synuclein protein aggregate and sustained microglia activation contribute to the pathogenic processes of PD. However, the relationship between α-synuclein and microglia-mediated neuroinflammation remains unclear. We purified α-synuclein after overexpression in Escherichia coli and then used it to stimulate BV-2 cells or primary microglia cells from wild type or toll-like receptor 4 (TLR4)-defective mice. Enzyme linked immunosorbent assay (ELISA) and real-time PCR results confirmed that α-synuclein could enhance the production of tumor necrosis factor α (TNF-α) through TLR4 activation. Western blotting results confirmed the involvement of the TLR4/PI3K/AKT/GSK3β signal pathway in the inflammatory response. Nuclear factor kappa B (NF-κB) could translocate to the nucleus, promoting the expression of TNF-α when stimulated by α-synuclein in BV-2 cells. Nurr1 suppressed the production of TNF-α via interaction with NF-κB/p65 and inhibiting its nuclear translocation. In addition, both NF-κB and Nurr1 appeared to be regulated by the TLR4-mediated signal pathway. Our work demonstrated that TLR4 recognized α-synuclein and activated downstream signaling mechanisms leading to the release of pro-inflammatory mediators that are contra-balanced by Nurr1 expression. In conclusion, Nurr1 is a novel participant in the neuroinflammation stimulated by α-synuclein, thus the regulation of Nurr1 may be a novel neuroprotective target for PD treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2018.04.008 | DOI Listing |
JCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.
View Article and Find Full Text PDF