98%
921
2 minutes
20
The adaptive fasting response is invoked as a promising cardiometabolic and neurodegenerative therapeutic pathway. We and others have defined the carbohydrate transporter glucose transporter 8 (GLUT8) as a critical regulator of hepatic and whole-organism metabolic homeostasis in the overfed and diabetic states. However, the functions of this critical transporter in the physiological fasting response remain poorly understood. Here, we tested the hypothesis that GLUT8 modulates the adaptive hepatic fasting response. We demonstrate that mice with targeted Slc2a8 disruption exhibit enhanced thermogenesis, ketogenesis, and peripheral lipid mobilization during fasting. These metabolic enhancements were observed in the context of mildly impaired hepatic mitochondrial oxidative metabolism in vivo and in vitro. Mechanistically, we show that hepatic peroxisome proliferator-activated receptor α (PPARα) and its transcriptional fasting response target hepatokine, fibroblast growth factor (FGF)21, are cell-autonomously hyperactivated in GLUT8-deficient liver and in isolated primary murine hepatocytes during nutrient depletion. Hepatic PPARα knockdown in GLUT8-deficient mice normalized the enhanced ketogenic and FGF21 secretory responses and decreased mitochondrial respiratory function without altering the hyperthermic response to fasting. Our data demonstrate that hepatocyte GLUT8 regulates adaptive fasting in part through regulation of the PPARα signaling cascade. Moreover, the ketotic and thermic responses to fasting are differentially encoded within the GLUT8-PPARα communication axis. GLUT8 therefore represents a therapeutic target that can be leveraged against cardiometabolic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366533 | PMC |
http://dx.doi.org/10.1210/en.2017-03150 | DOI Listing |
J Cachexia Sarcopenia Muscle
September 2025
Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.
View Article and Find Full Text PDFCell Death Differ
September 2025
Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.
Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.
View Article and Find Full Text PDFInt J Pharm
September 2025
Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:
Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.
View Article and Find Full Text PDFDiabetes Res Clin Pract
September 2025
Siriraj Population Health and Nutrition Research Group (SPHERE), Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. Electronic address:
Aims: Low-carbohydrate diets (LCDs) have emerged as a potential dietary intervention for managing glycemic control, but their effectiveness across different cultural contexts remains unclear. To evaluate the efficacy of LCDs in managing type 2 diabetes, with attention to cultural context, and to clarify how variability in carbohydrate definitions affects interpretation.
Methods: We searched PubMed, Embase, and Scopus from inception to 1 August 2024 for randomized controlled trials (RCTs) ≥ 12 weeks in adults with type 2 diabetes.
PLoS One
September 2025
Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia.
Food intake is a key regulator of the digestive system function; however, little is known about organ- and sex-specific differences in food-driven regulation. We placed male and female C57Bl/6 mice on time-restricted feeding (TRF), limiting access to food to an 8-hour window. Food was added either at dark (ZT12) or light (ZT0) onset for 14 days.
View Article and Find Full Text PDF