98%
921
2 minutes
20
The authors have synthesized molybdenum disulfide nanosheets (MoS nanosheets) by using a bottom-up hydrothermal method. The nanosheets display strong catalytic (enzyme mimetic) activity in catalyzing the oxidation of peroxidase substrate of 3,3',5,5'-tetramethylbenzidine (TMB) in presence of HO to produce a blue product. The peroxidase mimicking properties of MoS nanosheets depend on temperature, HO concentration and pH value. A choline assay was worked out where choline was oxidized by choline oxidase in presence of oxygen to produce HO which is colorimetrically detected, best at 652 nm. The method works in the 1 to 180 μM choline concentration range with a 0.4 μM detection limit. Color changes may also be detected visually. The assay is simple, highly sensitive, selective and rapid. It was applied in the determination of choline in (spiked) milk and serum. Graphical abstract Basic principle of intrinsic peroxidase-like activity of MoS nanosheets, applied to design a rapid and selective colorimetric assay for choline detection based on the tetramethylbenzidine (TMB) color reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-2753-2 | DOI Listing |
Am J Clin Pathol
September 2025
Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
Objective: Choline transporter (ChT) immunohistochemistry (IHC) is a new ancillary test that aids in the diagnosis of Hirschsprung disease in newborns and infants. The behavior of this stain in older children (greater than 1 year of age) with chronic constipation, where Hirschsprung disease is clinically unlikely, has not been investigated. The aim of our study was to determine the behavior of ChT IHC in rectal biopsies performed on older children with chronic constipation.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Eutectogels have emerged as versatile materials for wearable electronics, optical sensors, and biomedical applications. This study introduced the first investigation of microenvironmental basicity in poly(vinyl alcohol)/choline chloride (PVA/ChCl) eutectogels using lumichrome as a fluorescent probe. The incorporation of ChCl was demonstrated to enhance the microbasicity of PVA films, as evidenced by the significant promotion of lumichrome deprotonation.
View Article and Find Full Text PDFActa Histochem
September 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1‑1‑1 Minami‑Kogushi, Ube 755‑8505, Japan. Electronic address:
Cholinergic neurons in the basal forebrain cholinergic nuclei (BFCN) and neostriatum (CPu) play key roles in learning, attention, and motor control. The loss of cholinergic neurons causes major neurodegenerative diseases such as Alzheimer's disease. This study aimed to elucidate the molecular diversity of choline acetyltransferase immunoreactive (ChAT-ir) neurons in these brain regions.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China. Electronic address:
Ethnopharmacological Relevance: Chrysanthemum (Chrysanthemum morifolium Ramat.) is a widely used plant with both medicinal and dietary applications, boasting a history spanning thousands of years, exhibiting various pharmacological activities such as anti-inflammatory, antipyretic, antibacterial, and antiviral effects. According to the Compendium of Materia Medica, chrysanthemum is renowned for its ability to calm the liver and improve vision.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDF