Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug bioactivation to reactive metabolites capable of covalent adduct formation with bionucleophiles is a major cause of drug-induced adverse reactions. Therefore, elucidation of reactive metabolites is essential to unravel the toxicity mechanisms induced by drugs and thereby identify patient subgroups at higher risk. Etravirine (ETR) was the first second-generation Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) to be approved, as a therapeutic option for HIV-infected patients who developed resistance to the first-generation NNRTIs. Additionally, ETR came into market aiming to overcome some adverse effects associated with the previously used efavirenz (neurotoxicity) and nevirapine (hepatotoxicity) therapies. Nonetheless, post-marketing reports of severe ETR-induced skin rash and hypersensitivity reactions have prompted the U.S. FDA to issue a safety alert on ETR. Taking into consideration that ETR usage may increase in the near future, due to the possible use of the drug for coinfection with malaria and HIV, the development of reliable prognostic tools for early risk/benefit estimations is urgent. In the current study, high resolution mass spectrometry-based methodologies were integrated with MS experiments for the identification of reactive ETR metabolites/adducts: 1) in vitro incubation of the drug with human and rat liver S9 fractions in the presence of Phase I and II co-factors, including glutathione, as a trapping bionucleophile; and 2) in vivo, using urine samples from HIV-infected patients on ETR therapy. We obtained evidence for multiple bioactivation pathways leading to the formation of covalent adducts with glutathione and N-acetyl-L-cysteine. These results suggest that similar reactions may occur with cysteine residues of proteins, supporting a role for ETR bioactivation in the onset of the toxic effects elicited by the drug. Additionally, ETR metabolites stemming from amine oxidation, with potential toxicological significance, were identified in vitro and in vivo. Also noteworthy is the fact that new metabolic conjugation pathways of glucuronide metabolites were demonstrated for the first time, raising questions about their potential toxicological implications. In conclusion, these results represent not only a contribution towards the elucidation of new metabolic pathways of drugs in general but also an important step towards the elucidation of potentially toxic ETR pathways, whose understanding may be crucial for reliable risk/benefit estimations of ETR-based regimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2018.03.026DOI Listing

Publication Analysis

Top Keywords

reactive metabolites
12
etr
9
high resolution
8
resolution mass
8
mass spectrometry-based
8
spectrometry-based methodologies
8
bioactivation reactive
8
vitro vivo
8
hiv-infected patients
8
additionally etr
8

Similar Publications

Background And Aim: Porcine follicular fluid (pFF) is frequently used to mimic the follicular microenvironment during maturation (IVM) of oocytes. However, the influence of oxidative stress levels within pFF on oocyte quality and embryo development remains unclear. This study aimed to investigate how varying oxidative stress index (OSI) of pFF affect porcine oocyte meiotic progression, fertilization, and embryonic development during IVM.

View Article and Find Full Text PDF

Physiology combined with metabolomics reveal selenium acting as a mitigator for Perilla frutescens (L.) Britt. growth under oxytetracycline condition: by regulating photosynthesis, redox homeostasis and secondary metabolites.

Plant Physiol Biochem

September 2025

School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China. Electronic address:

The accumulation of antibiotics in soil threatens agricultural ecosystems and human health. Oxytetracycline (OTC), a plant-absorbable antibiotic, generally exerts inhibitory effects on plant growth. Selenium (Se) plays a crucial role in safeguarding plants resistant to a variety of abiotic stresses.

View Article and Find Full Text PDF

Synthesis of Quaternary Ammonium Derivatives of Eugenol and Their Antifungal Mechanism against Wood-Decaying Fungi.

J Agric Food Chem

September 2025

College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,

To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.

View Article and Find Full Text PDF

Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.

View Article and Find Full Text PDF

In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().

View Article and Find Full Text PDF