98%
921
2 minutes
20
A single point-mutation in GmHMA3 (Glycine max heavy metal-associated ATPase; a wild type allele cloned from a low Cd-accumulated soybean) is closely associated with seed cadmium (Cd) concentration. It is linked to Cd transportation in yeast, and is primarily expressed in the roots of plants. We hypothesized that the function of GmHMA3w in soybean would be akin to that of OsHMA3 in rice, which expresses in the root tonoplast and sequestrates Cd into the root vacuole to reduce Cd translocation to the shoots and limit its accumulation in the seeds. In this study, the transient expression of the GmHMA3w-GFP fusion protein in rice mesophyll protoplasts indicated that the subcellular localization of GmHAM3w was in the endoplasmic reticulum (ER). Overexpression of GmHMA3w increased the Cd concentration in the roots, decreased the Cd concentration in the stems, and did not affect the Cd concentration in the leaves. Additionally, its overexpression did not alter the Cd concentration across the whole plant. These findings indicated that GmHMA3w does not influence the Cd uptake, but limits the translocation of Cd from the roots to the stems. GmHMA3w thus acts in metal transportation. Assessment of the subcellular distribution of Cd indicated that GmHMA3w facilitated transport of Cd from the cell wall fraction to the organelle fraction, and then sequestrated Cd into the root ER, thus limiting its translocation to the stems. Additionally, the results also suggested that the ER constitutes a site of particularly high Cd sensitively in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.02.007 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFNanoscale
September 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Correction for 'Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots' by Shuang E , , 2018, , 12788-12796, https://doi.org/10.1039/C8NR03453B.
View Article and Find Full Text PDFGenetics
September 2025
Department of Biology, McGill University, 3649 Sir William Osler, Montreal, Quebec, Canada H3G 0B1.
The E2F family of transcription factors are key regulators of the cell cycle in all metazoans. While they are primarily known for their role in cell cycle progression, E2Fs also play broader roles in cellular physiology, including the maintenance of exocrine tissue homeostasis. However, the underlying mechanisms that render exocrine cells particularly sensitive to E2F deregulation remain poorly understood.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, University of Zurich, CH-8057, Zurich, Switzerland.
Paraptosis is a distinct form of programmed cell death characterized by cytoplasmic vacuolization, mitochondrial swelling, and endoplasmic reticulum (ER) dilation, offering an alternative to apoptosis for therapeutic applications. In this study, we identified a hemicyanine derivative that is a potent paraptosis inducer in two cancer cell lines. This compound triggers hallmark paraptotic features, including ER swelling, mitochondrial morphological changes, increased superoxide production, and caspase-independent cell death.
View Article and Find Full Text PDFOncogene
September 2025
Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
Cholesterol biosynthesis is more activated in triple negative breast cancer (TNBC) than in other subtype breast cancer and plays essential role in facilitating TNBC. However, the regulatory network and how cholesterol biosynthesis contribute to TNBC development and progression are not well elucidated. Here, we found that reticulum membrane protein complex 2 (EMC2) is highly expressed in TNBC and predicts short survival of patients.
View Article and Find Full Text PDF