98%
921
2 minutes
20
Background And Purpose: Liver ischaemia and reperfusion (IR) injury is a sterile inflammatory response involving production of ROS. Mitochondrial homeostasis is maintained by mitochondrial quality control (QC). Thioredoxin (TRX) 2 is a key mitochondrial redox-sensitive protein. Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator, exerts anti-inflammatory and antioxidant activities. We investigated mechanisms of RvD1 protection against IR-induced oxidative damage to the liver, focusing on TRX2-mediated mitochondrial QC.
Experimental Approach: Mice underwent partial warm IR. RvD1 was administered 1 h before ischaemia and immediately prior to reperfusion. Human liver carcinoma HepG2 cells were exposed to hypoxia/reoxygenation and transfected with TRX2 siRNA. Immunohistochemistry, Western blotting and enzyme assays were used to follow changes in mitochondrial structure and function.
Key Results: RvD1 attenuated hepatocellular damage following IR, assessed by serum aminotransferase activities and histology. RvD1 reduced mitochondrial swelling, lipid peroxidation and glutamate dehydrogenase release. Impaired activities of mitochondrial complexes I and III were restored by RvD1. RvD1 enhanced expression of the mitophagy-related protein, Parkin and inhibited accumulation of PTEN-induced putative kinase 1. RvD1 restored levels of mitochondrial biogenesis proteins including PPARγ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A and mtDNA level. RvD1 attenuated the increase in levels of the mitochondrial fission-related protein, dynamin-related protein 1. IR reduced TRX2 levels while increasing TRX2 association with TRX-interacting protein. RvD1 attenuated these changes. The regulatory effects of RvD1 on mitochondrial QC were abolished by TRX2 knockdown.
Conclusions And Implications: We suggest that RvD1 ameliorated IR-induced hepatocellular damage by regulating TRX2-mediated mitochondrial QC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980610 | PMC |
http://dx.doi.org/10.1111/bph.14212 | DOI Listing |
Plant Commun
September 2025
College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Molecular phylogenetics illustrates the evolution and divergence of green plants by employing sequence data from various sources. Interestingly, phylogenetic reconstruction based on mitochondrial genes tends to exhibit incongruence with those derived from nuclear and chloroplast genes. Although the uniparental inheritance and conservatively retained protein-coding genes of mitochondrial genomes inherently exclude certain potential factors that affect phylogenetic reconstruction, such as hybridization and gene loss, the utilization of mitochondrial genomes for phylogeny and divergence time estimation remains limited.
View Article and Find Full Text PDFWorld J Surg Oncol
September 2025
Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.
Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.
Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.
Am J Clin Nutr
September 2025
COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Circulating levels of 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), a metabolite derived from dietary furan fatty acids primarily found in marine food sources, have long been recognized as biomarkers for fish intake. However, elevated CMPF levels are also observed in patients with type 2 diabetes or chronic kidney disease and in healthy people associated with a reduced infection risk, suggesting potential bioactive roles in metabolism and immune function. Yet, the possible causal mechanisms behind these associations are unknown.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. Electronic address:
Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.
View Article and Find Full Text PDFMol Cells
September 2025
Department of Neuroscience, Kyung Hee University, Seoul, South Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, South Korea. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein. Current treatments, including dopaminergic medications and deep brain stimulation (DBS), provide symptomatic relief but do not halt disease progression. Recent advances in molecular research have enabled the development of disease-modifying strategies targeting key pathogenic mechanisms, such as α-synuclein aggregation, mitochondrial dysfunction, and genetic mutations including LRRK2 and GBA1.
View Article and Find Full Text PDF