The Force Is Strong with This One: Metabolism (Over)powers Stem Cell Fate.

Trends Cell Biol

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. Electronic address:

Published: July 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compared to their differentiated progeny, stem cells are often characterized by distinct metabolic landscapes that emphasize anaerobic glycolysis and a lower fraction of mitochondrial carbohydrate oxidation. Until recently, the metabolic program of stem cells had been thought to be a byproduct of the environment, rather than an intrinsic feature determined by the cell itself. However, new studies highlight the impact of metabolic behavior on the maintenance and function of intestinal stem cells and hair follicle stem cells. This Review summarizes and discusses the evidence that metabolism is not a mere consequence of, but rather influential on stem cell fate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005741PMC
http://dx.doi.org/10.1016/j.tcb.2018.02.007DOI Listing

Publication Analysis

Top Keywords

stem cells
16
stem cell
8
cell fate
8
stem
6
force strong
4
strong metabolism
4
metabolism overpowers
4
overpowers stem
4
fate compared
4
compared differentiated
4

Similar Publications

Protocol for constructing an accessible exposure chamber for in vitro and in vivo modeling of airway environmental exposures.

STAR Protoc

September 2025

UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; UCLA Environmental and Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA

Exposure systems to study the effects of environmental exposures can be costly to purchase and difficult to use. Here, we present an accessible and cost-effective approach to building an exposure chamber in the lab. We describe steps for constructing the exposure system and writing the code to run it and simple instructions for experiments using the system.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF