Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Next-generation sequencing methods enable identification of the genetic basis of traits in species that have no prior genomic information available. The combination of next-generation sequencing, variant analysis, and linkage is a powerful way of identifying candidate genes for a trait of interest. Here, we used a comparative transcriptomics [RNA sequencing (RNAseq)] and genetic linkage analysis approach to identify the gene. variants are responsible for resistance to the fumigant phosphine (PH) that is used to control insect pests of stored grain. In each of the four major species of pest insect of grain we have investigated, there are two major resistance genes, and , which interact synergistically to produce strongly phosphine-resistant insects. Using RNAseq and genetic linkage analyses, we identified candidate resistance () genes in phosphine-resistant strains of three species: (129 candidates), (206 candidates), and (645 candidates). We then compared these candidate genes to 17 candidate resistance genes previously mapped in and found only one orthologous gene, a (C), to be associated with the locus in all four species. This gene had either missense amino acid substitutions and/or insertion/deletions/frameshift variants in each of 18 phosphine-resistant strains that were not observed in the susceptible strains of the four species. We propose a model of phosphine action and resistance in which phosphine induces lipid peroxidation through reactive oxygen species generated by dihydrolipoamide dehydrogenase, whereas disruption of in resistant insects decreases the polyunsaturated fatty acid content of membranes, thereby limiting the potential for lipid peroxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937174PMC
http://dx.doi.org/10.1534/genetics.118.300688DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
linkage analysis
8
next-generation sequencing
8
candidate genes
8
genetic linkage
8
candidate resistance
8
phosphine-resistant strains
8
lipid peroxidation
8
resistance
6
species
6

Similar Publications

Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. In this study, we investigated the molecular correlates of impaired extinction of alcohol seeking during forced abstinence using a mouse model of AUD in the automated IntelliCage social system. This model distinguished AUD-prone and AUD-resistant animals based on the presence of ≥2 or <2 criteria of AUD, respectively.

View Article and Find Full Text PDF

Type I interferon (IFN-I) is highly prevalent in autoimmune disorders and is intricately involved in disease pathogenesis, including Sjögren's disease (SjD), also known as Sjögren's syndrome. Although the T follicular helper (Tfh) cell response has been shown to drive SjD development in a mouse model of experimental Sjögren's syndrome (ESS), the connection between IFN-I and the Tfh cell response remains unclear. As the activation of stimulator of interferon genes (STING) induces IFN-I production, we first demonstrated that mice deficient in STING or IFN-I signaling presented diminished Tfh cells and were completely resistant to ESS development.

View Article and Find Full Text PDF

Cholesterol biosynthesis is more activated in triple negative breast cancer (TNBC) than in other subtype breast cancer and plays essential role in facilitating TNBC. However, the regulatory network and how cholesterol biosynthesis contribute to TNBC development and progression are not well elucidated. Here, we found that reticulum membrane protein complex 2 (EMC2) is highly expressed in TNBC and predicts short survival of patients.

View Article and Find Full Text PDF

T-cell receptors (TCRs) recognize antigens derived from fragments of somatically expressed proteins that are degraded by the proteasome and presented by specific human leukocyte antigen (HLA) molecules. Recent therapeutic advances using the TCR as a tumor-targeting moiety have focused attention on loss of heterozygosity (LOH) as a potential resistance mechanism. Allele-specific LOH, rather than allele-agnostic, is particularly pertinent, but rarely evaluated.

View Article and Find Full Text PDF

Fluoroquinolone resistance in , particularly uropathogenic (UPEC), is a growing concern worldwide. This study investigates the association between mutations in the and genes and fluoroquinolone resistance in UPEC isolates from Urine samples in Iran. In total, 150 UPEC isolates were collected, and then, 12 ciprofloxacin-resistant isolates were selected for molecular analysis.

View Article and Find Full Text PDF