Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2018.01.004DOI Listing

Publication Analysis

Top Keywords

interleukin-7 receptor
8
receptor cxcr4
8
il-7r expression
8
glucocorticoids
4
glucocorticoids drive
4
diurnal
4
drive diurnal
4
diurnal oscillations
4
oscillations cell
4
cell distribution
4

Similar Publications

A PBX1-IL7R axis mediates liver fibrosis in non-alcoholic fatty liver disease.

Life Sci

August 2025

Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China. Electronic address:

Aims: Non-alcoholic fatty liver disease (NAFLD), also known as metabolic dysfunction associated steatotic liver disease (MASLD), represents a spectrum of chronic liver diseases that eventually lead to cirrhosis and hepatocellular carcinoma. Liver fibrosis is both a pathological feature and a contributing factor in NAFLD. In the present study we investigated whether targeting pre-B cell leukemia transcription factor 1 (PBX1) and interleukin 7 receptor (IL7R) might ameliorate liver fibrosis in the context of NAFLD.

View Article and Find Full Text PDF

Introduction: Clinical studies of T cells engineered with chimeric antigen receptor (CAR) targeting CD19 in B-cell malignancies have demonstrated that relapse due to target antigen (CD19) loss or limited CAR T cell persistence is a common occurrence. The possibility of such events is greater in solid tumors, which typically display more heterogeneous antigen expression patterns and are known to directly suppress effector cell proliferation and persistence. T cell engineering strategies to overcome these barriers are being explored.

View Article and Find Full Text PDF

The interleukin-2 receptor γ (IL-2Rγ, or γc) is a crucial component of several cytokine receptor complexes. Deficiencies in γc lead to X-linked severe combined immunodeficiency (X-SCID), characterized by recurrent infections due to the absence or dysfunction of T and NK cells, and nonfunctional B cells. Missense variants in the γc extracellular region are linked to atypical X-SCID with normal counts of T, B, and NK cells and less severe symptoms, yet the underlying cellular and molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Background: Adoptive transfer of chimeric antigen receptor (CAR)-expressing natural killer (NK) cells has demonstrated success against hematological malignancies. Efficacy against solid tumors has been limited by poor NK cell survival and function in the suppressive tumor microenvironment (TME). To enhance efficacy against solid tumors, stimulatory cytokines have been incorporated into CAR-NK cell therapeutic approaches.

View Article and Find Full Text PDF

De novo design of binders capable of targeting arbitrarily selected epitopes remains a substantial challenge. Here, a generalizable computational strategy is presented to design site-specific protein binders, obviating steps of extensive empirical optimization or in vitro screening. The dock-and-design pipeline retrieves complementary scaffolds from a protein structure database to a given query epitope, where the scaffold is mutated to carve a binding site de novo.

View Article and Find Full Text PDF