Inner Phases of Colloidal Hexagonal Spin Ice.

Phys Rev Lett

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show that colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has not been observed previously. Under increasing colloid-colloid repulsion, the initially paramagnetic system crosses into a disordered ice regime, then forms a topologically charge ordered state with disordered colloids, and finally reaches a threefold degenerate, ordered ferromagnetic state. This is reminiscent of, yet distinct from, the inner phases of the magnetic kagome spin ice analog. The difference in the inner phases of the two systems is explained by their difference in energetics and frustration.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.027204DOI Listing

Publication Analysis

Top Keywords

inner phases
12
spin ice
12
colloidal hexagonal
8
ice
6
inner
4
phases colloidal
4
hexagonal spin
4
ice numerical
4
numerical simulations
4
simulations mimic
4

Similar Publications

Platelet integrin αIIbβ3 is the final common effector of arterial thrombosis: it switches from a low-affinity to a high-affinity state, binds fibrinogen, and initiates the outside-in signals that stabilize a growing clot. Calcium- and integrin-binding protein 1 (CIB1) emerged as the first endogenous partner of the αIIb cytoplasmic tail and is now recognized as a dual-role adaptor. At rest, Ca-free CIB1 tethers the inner membrane clasp and restrains premature integrin activation; after ligand engagement, Ca-bound CIB1 docks onto αIIb, recruits focal-adhesion kinase and amplifies Src-dependent cytoskeletal remodeling.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.

View Article and Find Full Text PDF

In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.

View Article and Find Full Text PDF

Mi-Lnc70 Regulates the Progression of Murine Pancreatic β-Cell Line and Affects the Synthesis of Insulin and Glucagon.

Onco Targets Ther

September 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.

Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.

Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.

View Article and Find Full Text PDF