98%
921
2 minutes
20
Surface-layer associated proteins (SLAP) of Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L were examined to identify the functional basis for their protection within intestinal epithelial cells. The results showed that SLAP of M5-L and Q8-L remained active in a trypsin solution and retained a 45-kDa protein band, similar to that observed in controls. In contrast, under conditions of simulated gastric juice, the SLAP were partially degraded. Inhibitory effects of SLAP on adherence of Shigella sonnei to HT-29 cells were assessed with use of exclusion, competition, and replacement assays. In response to M5-L at 50 μg/mL SLAP, an inhibition ratio of 33% was obtained, while for Q8-L at 400 μg/mL SLAP, the inhibition ratio was 48%. Hoechst 33258 test results showed that cells infected with S. sonnei and co-incubated with SLAP of M5-L and Q8-L were only partially apoptotic, with apoptosis rates of 37.67 and 43.67%, respectively. These levels of apoptosis were substantially lower than that observed with cells infected with S. sonnei alone. In addition, the SLAP of Q8-L and M5-L reduced downstream caspase-1 activity and further modified apoptotic cell damage. Finally, SLAP of M5-L and Q8-L were also able to prevent S. sonnei-induced membrane damage by inhibiting delocalization of zonula occludens (ZO)-1 and reducing the amount of occludin produced by S. sonnei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-13417 | DOI Listing |
J Dairy Sci
March 2018
Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Surface-layer associated proteins (SLAP) of Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L were examined to identify the functional basis for their protection within intestinal epithelial cells. The results showed that SLAP of M5-L and Q8-L remained active in a trypsin solution and retained a 45-kDa protein band, similar to that observed in controls.
View Article and Find Full Text PDFJ Dairy Sci
February 2016
Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin150090, China.
Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions.
View Article and Find Full Text PDF