Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purine analogues tenofovir and abacavir are precursors of potential substrates for the enzyme Inosine 5'-triphosphate pyrophosphohydrolase (ITPase). Here, we investigated the association of ITPase activity and ITPA genotype with the occurrence of adverse events (AEs) during combination antiretroviral therapy (cART) for human immunodeficiency virus (HIV) infection. In 393 adult HIV-seropositive patients, AEs were defined as events that led to stop of cART regimen. ITPase activity ≥4 mmol IMP/mmol Hb/hour was considered as normal. ITPA genotype was determined by testing two ITPA polymorphisms: c.94C>A (p.Pro32Thr, rs1127354) and c.124+21A>C (rs7270101). Logistic regression analysis determined odds ratios for developing AEs. In tenofovir-containing regimens decreased ITPase activity was associated with less AEs (p = 0.01) and longer regimen duration (p = 0.001). In contrast, in abacavir-containing regimens decreased ITPase activity was associated with more AEs (crude p = 0.02) and increased switching of medication due to AEs (p = 0.03). ITPA genotype wt/wt was significantly associated with an increase in the occurrence of AEs in tenofovir-containing regimens. Decreased ITPase activity seems to be protective against occurrence of AEs in tenofovir-containing cART, while it is associated with an increase in AEs in abacavir-containing regimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766130PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191069PLOS

Publication Analysis

Top Keywords

itpase activity
20
itpa genotype
12
aes tenofovir-containing
12
regimens decreased
12
decreased itpase
12
aes
9
adverse events
8
combination antiretroviral
8
antiretroviral therapy
8
tenofovir-containing regimens
8

Similar Publications

Thiopurines, an effective therapy for Crohn's disease (CD), often lead to adverse events (AEs). Gene polymorphisms affecting thiopurine metabolism may predict AEs. This retrospective study in CD patients (n = 114) with TPMT activity > 5 Units/Red Blood Cells analyzed TPMT (c.

View Article and Find Full Text PDF

An ITPA Enzyme with Improved Substrate Selectivity.

Protein J

February 2024

Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.

Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism.

View Article and Find Full Text PDF

To investigate associations between inosine triphosphatase (ITPA) gene polymorphisms and long-term outcomes among chronic hepatitis C (CHC) patients in Northeast China treated with Peg-interferon (IFN)/ribavirin (RBV). CHC patients who received Peg-IFN-2a/RBV treatment during between 2011 and 2013 at 5 hepatitis centers in Northeast China were enrolled. ITPA single nucleotide polymorphisms rs1127354 and rs7270101 from all patients were detected and their associations with 5-year outcomes were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Inosine triphosphate pyrophosphatase (ITPase), produced by the ITPA gene, helps maintain healthy cellular nucleotide levels by breaking down noncanonical purine nucleotides.
  • Variants of the ITPA gene can lead to partial or complete deficiencies; while partial deficiency is typically benign, complete deficiency can cause severe health issues, including seizures and cardiomyopathy.
  • The review discusses ITPase's functions and recent research focusing on the molecular mechanisms behind ITPA-related disorders, emphasizing the role of RNA dysfunction.
View Article and Find Full Text PDF

Molecular basis of RADAR anti-phage supramolecular assemblies.

Cell

March 2023

CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: g

Adenosine-to-inosine RNA editing has been proposed to be involved in a bacterial anti-phage defense system called RADAR. RADAR contains an adenosine triphosphatase (RdrA) and an adenosine deaminase (RdrB). Here, we report cryo-EM structures of RdrA, RdrB, and currently identified RdrA-RdrB complexes in the presence or absence of RNA and ATP.

View Article and Find Full Text PDF