A rapid decrease in the rotation rate of comet 41P/Tuttle-Giacobini-Kresák.

Nature

Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cometary outgassing can produce torques that change the spin state of the cometary nucleus, which in turn influences the evolution and lifetime of the comet. If these torques increase the rate of rotation to the extent that centripetal forces exceed the material strength of the nucleus, the comet can fragment. Torques that slow down the rotation can cause the spin state to become unstable, but if the torques persist the nucleus can eventually reorient itself and the rotation rate can increase again. Simulations predict that most comets go through a short phase of rapid changes in spin state, after which changes occur gradually over longer times. Here we report observations of comet 41P/Tuttle-Giacobini-Kresák during its close approach to Earth (0.142 astronomical units, approximately 21 million kilometres, on 1 April 2017) that reveal a rapid decrease in rotation rate. Between March and May 2017, the apparent rotation period of the nucleus increased from 20 hours to more than 46 hours-a rate of change of more than an order of magnitude larger than has hitherto been measured. This phenomenon must have been caused by the gas emission from the comet aligning in such a way that it produced an anomalously strong torque that slowed the spin rate of the nucleus. The behaviour of comet 41P/Tuttle-Giacobini-Kresák suggests that it is in a distinct evolutionary state and that its rotation may be approaching the point of instability.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature25150DOI Listing

Publication Analysis

Top Keywords

rotation rate
12
comet 41p/tuttle-giacobini-kresák
12
spin state
12
rapid decrease
8
decrease rotation
8
rotation
7
rate
6
comet
6
nucleus
5
rate comet
4

Similar Publications

We present the first dataset of collisional (de)-excitation rate coefficients of HCN induced by CO, one of the main perturbing gases in cometary atmospheres. The dataset spans the temperature range of 5-50 K. It includes both state-to-state rate coefficients involving the lowest ten and nine rotational levels of HCN and CO, respectively, and the so-called "thermalized" rate coefficients over the rotational population of CO at each kinetic temperature.

View Article and Find Full Text PDF

Understanding how interactive management practices and climatic behavior influence soybean [Glycine max (L.) Merr.] productivity is imperative to inform future production systems under changing climate.

View Article and Find Full Text PDF

Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images.

View Article and Find Full Text PDF

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.

View Article and Find Full Text PDF

The interstellar medium (ISM) is a complex and dynamic environment in which molecular collisions play a crucial role. Among these, protonated carbon chains are of great interest due to the presence of a permanent dipole moment and their relevance in describing astrochemical processes, making their detection possible in cold molecular clouds such as TMC-1. C5H+ (1Σg+) is an important molecule for understanding the formation and evolution of carbon-rich environments.

View Article and Find Full Text PDF