98%
921
2 minutes
20
Aspergillus fumigatus is one of the major causes of invasive pulmonary aspergillosis in immunocompromised patients. Novel antifungal therapy is in urgent need due to emerging resistance and adverse toxicity of current antifungal drugs. Gene products that are essential for Aspergillus viability during infection are attractive drug targets. To characterize these genes in vivo we developed a Tet-Off gene expression system in A. fumigatus, whereby the administration of doxycycline resulted in down regulation of the gene whose expression is under the control of the Tet-Off promoter. We tested the system on two potential drug targets, inosine 5'-monophosphate dehydrogenase (IMPDH) and L-ornithine N-oxygenase (sidA) in a murine invasive pulmonary aspergillosis model. We show that depletion of IMPDH attenuated but did not completely abolish virulence in vivo whereas turning off the expression of sidA, which is required for iron acquisition, resulted in avirulence. We also investigated whether sidA expression could be controlled in a time-dependent manner in mice. Our results demonstrated that timing of doxycycline administration dramatically affects survival rate, suggesting that this genetic system can be used for testing whether an antifungal drug target is critical for fungal growth post-infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765126 | PMC |
http://dx.doi.org/10.1038/s41598-017-18868-9 | DOI Listing |
Dig Dis Sci
September 2025
Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.
Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.
Med Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFActa Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDF