98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2307/1541648 | DOI Listing |
J Phys Chem A
September 2025
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.
View Article and Find Full Text PDFSmall
September 2025
School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China.
Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.
View Article and Find Full Text PDFCommun Biol
September 2025
Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg - Martinsried, Germany.
The internal resistance of axons to ionic current flow determines action potential conduction velocity. Although mitochondria support axonal function, axons have been modeled as organelle-free cables, and mitochondrial impact on conduction velocity, specifically by increasing internal resistance, remains understudied. We combine computational modeling and electron microscopy of forebrain premotor axons controlling birdsong production.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China. Electronic address:
Li/CF primary batteries are renowned for their exceptional energy density, yet their practical deployment is hindered by the inherently sluggish kinetics of the CF cathode. This study addresses this limitation by incorporating selenium (Se) into CF (denoted as CF/Se) via a facile low-temperature thermal treatment, significantly enhancing its electrochemical performance. Comprehensive spectroscopic and electrochemical analyses reveal that Se doping induces the formation of CSe bonds, which promote semi-ionic CF bonding, thereby accelerating Li diffusion and reducing charge transfer resistance.
View Article and Find Full Text PDF