Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The high mutation rates of RNA viruses lead to rapid genetic diversification, which can enable cooperative interactions between variants in a viral population. We previously described two distinct variants of H3N2 influenza virus that cooperate in cell culture. These variants differ by a single mutation, D151G, in the neuraminidase protein. The D151G mutation reaches a stable frequency of about 50% when virus is passaged in cell culture. However, it is unclear whether selection for the cooperative benefits of D151G is a cell culture phenomenon or whether the mutation is also sometimes present at appreciable frequency in virus populations sampled directly from infected humans. Prior work has not detected D151G in unpassaged clinical samples, but those studies have used methods like Sanger sequencing and pyrosequencing, which are relatively insensitive to low-frequency variation. We identified nine samples of human H3N2 influenza virus collected between 2013 and 2015 in which Sanger sequencing had detected a high frequency of the D151G mutation following one to three passages in cell culture. We deep sequenced the unpassaged clinical samples to identify low-frequency viral variants. The frequency of D151G did not exceed the frequency of library preparation and sequencing errors in any of the sequenced samples. We conclude that passage in cell culture is primarily responsible for the frequent observations of D151G in recent H3N2 influenza virus strains. Viruses mutate rapidly, and recent studies of RNA viruses have shown that related viral variants can sometimes cooperate to improve each other's growth. We previously described two variants of H3N2 influenza virus that cooperate in cell culture. The mutation responsible for cooperation is often observed when human samples of influenza virus are grown in the lab before sequencing, but it is unclear whether the mutation also exists in human infections or is exclusively the result of lab passage. We identified nine human isolates of influenza virus that had developed the cooperating mutation after being grown in the lab and performed highly sensitive deep sequencing of the unpassaged clinical samples to determine whether the mutation existed in the original human infections. We found no evidence of the cooperating mutation in the unpassaged samples, suggesting that the cooperation arises primarily under laboratory conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750391PMC
http://dx.doi.org/10.1128/mSphereDirect.00552-17DOI Listing

Publication Analysis

Top Keywords

influenza virus
28
cell culture
24
h3n2 influenza
20
clinical samples
16
unpassaged clinical
12
mutation
10
virus
9
samples
8
rna viruses
8
variants h3n2
8

Similar Publications

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).

View Article and Find Full Text PDF

Continuous evolution of Eurasian avian-like H1N1 swine influenza viruses with pdm/09-derived internal genes enhances pathogenicity in mice.

J Virol

September 2025

National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered "mixing vessels" for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF