The contribution of weak CAM to the photosynthetic metabolic activities of a bromeliad species under water deficit.

Plant Physiol Biochem

Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 3005, CEP 01061-970, São Paulo, Brazil.

Published: February 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Crassulacean acid metabolism (CAM) can be a transitory strategy for saving water during unfavourable conditions, like a dry season. In some cases, CAM can also contribute to the maintenance of photosynthetic integrity, even if carbon gain and growth are impaired. CAM occurs in different intensities, being stronger or weaker depending on the degree of nocturnal malic acid accumulation. For example, Guzmania monostachia is an epiphytic tank bromeliad that shows an increase in its nocturnal organic acid accumulation and a variable CAM behaviour when exposed to water deficit. In this context, this study aimed at investigating whether the weak CAM displayed by this species may mitigate the harmful effects of water limitation on its photosynthetic activity. To this, bromeliads were submitted to well-watered and water deficit conditions. Guzmania monostachia plants under water deficiency conditions showed a reduction on atmospheric carbon assimilation without exhibiting changes in PSII integrity and carbohydrate production while showed an increase in nocturnal malic acid accumulation. Additionally, spots with high PSII efficiency in the leaf portion with a greater nocturnal malic acid accumulation were observed in plants exposed to water shortage conditions. These high-efficiency spots might be associated with a greater malate decarboxylation capacity. Also, the malic acid contributed to approximately 50% of the total carbon assimilated under water deficit. These results suggest that weak CAM may participate in photo-protection and it appears to meaningfully contribute to the overall carbon balance, being an important metabolic strategy to maintain plant fitness during water deficit periods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2017.12.030DOI Listing

Publication Analysis

Top Keywords

water deficit
20
malic acid
16
acid accumulation
16
weak cam
12
nocturnal malic
12
water
9
guzmania monostachia
8
increase nocturnal
8
exposed water
8
cam
7

Similar Publications

The therapeutic mechanisms of Shenwu Yizhi Capsule (SWYZC), a widely used treatment for vascular dementia (VD), remain unclear. This study integrated network pharmacology and experimental methods to elucidate the effects and mechanisms of SWYZC on cognitive function in VD rats. A VD model was established via bilateral common carotid artery occlusion (2-VO).

View Article and Find Full Text PDF

DHYZ modulates hippocampal cholinergic pathway acetylation to ameliorate cognitive deficits post-ischemic stroke in rats.

Brain Res

September 2025

Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Ischemic stroke is a serious cerebrovascular disease that is often accompanied by debilitating sensorimotor deficits and persistent cognitive deficits, which seriously affect patients' quality of life. DHYZ, a traditional Chinese herbal formula, has shown significant efficacy in restoring neurological function in ischemic regions of the brain, but its potential for improving poststroke cognitive impairment remains underdeveloped. In this study, the middle cerebral artery occlusion/reperfusion (MCAO/R) model was used to reproduce the pathological process of ischemic stroke in humans.

View Article and Find Full Text PDF

Allele-Specific Regulation of PAXIP1-AS1 by SMC3/CEBPB at rs112651172 in Psychiatric Disorders Drives Synaptic and Behavioral Dysfunctions in Mice.

Adv Sci (Weinh)

September 2025

Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Diso

Schizophrenia (SCZ) and bipolar disorder (BPD) are highly heritable psychiatric disorders with complex genetic and environmental underpinnings. Allele-specific expression (ASE) has emerged as a critical mechanism linking noncoding genetic variants to disease risk through epigenetic and environmental modulation. Here, whole-genome and transcriptome analyses of monozygotic twin pairs discordant for BPD or SCZ are performed, identifying that noncoding genetic variants drive differential ASE patterns of long noncoding RNAs (lncRNAs) in affected individuals compared to their unaffected co-twins.

View Article and Find Full Text PDF

Stomatal regulation, leaf water relations, and leaf phenology are coordinated in tree species from the Sonoran Desert.

AoB Plants

October 2025

Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.

To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.

View Article and Find Full Text PDF

Unlabelled: Neutrophils and neutrophil extracellular traps (NETs) contribute to early neuromyelitis optica (NMO) histopathology initiated by IgG targeting astrocytic aquaporin-4 water (AQP4) channels. Yet, the mechanisms recruiting neutrophils and their pathogenic roles in disease progression remain unclear. To investigate molecular-cellular events preceding classical complement cascade activation in a mouse NMO model, we continuously infused, via spinal subarachnoid route, a non-complement-activating monoclonal AQP4-IgG.

View Article and Find Full Text PDF