Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global change threatens invertebrate biodiversity and its central role in numerous ecosystem functions and services. Functional trait analyses have been advocated to uncover global mechanisms behind biodiversity responses to environmental change, but the application of this approach for invertebrates is underdeveloped relative to other organism groups. From an evaluation of 363 records comprising >1.23 million invertebrates collected from rivers across nine biogeographic regions on three continents, consistent responses of community trait composition and diversity to replicated gradients of reduced glacier cover are demonstrated. After accounting for a systematic regional effect of latitude, the processes shaping river invertebrate functional diversity are globally consistent. Analyses nested within individual regions identified an increase in functional diversity as glacier cover decreases. Community assembly models demonstrated that dispersal limitation was the dominant process underlying these patterns, although environmental filtering was also evident in highly glacierized basins. These findings indicate that predictable mechanisms govern river invertebrate community responses to decreasing glacier cover globally.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-017-0426-xDOI Listing

Publication Analysis

Top Keywords

glacier cover
16
functional diversity
12
community assembly
8
globally consistent
8
consistent responses
8
responses decreasing
8
decreasing glacier
8
river invertebrate
8
functional
4
community
4

Similar Publications

Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).

View Article and Find Full Text PDF

Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.

View Article and Find Full Text PDF

Diverse biofilm-forming represent twelve novel species isolated from glaciers on the Tibetan Plateau.

Int J Syst Evol Microbiol

September 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.

The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.

View Article and Find Full Text PDF

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.

View Article and Find Full Text PDF

Glacierised volcanoes pose significant hazards to societies. Monitoring these volcanoes is therefore essential, though challenging, as traditional geophysical and geochemical methods for tracking volcanic activity can be hindered by glacier cover or remoteness. In this study, we analyse to what extent 307 active volcanoes worldwide impact the mass balance of glaciers within a 40 km radius, a total of 40667 glaciers, by comparing their relative median elevations.

View Article and Find Full Text PDF