98%
921
2 minutes
20
Since interferon-γ (IFN-γ) tunes both innate and adaptive immune systems, it was expected to enter clinical practice as an immunomodulatory drug. However, the use of IFN-γ has been limited by its dose-dependent side effects. Low-dose medicine, which is emerging as a novel strategy to treat diseases, might circumvent this restriction. Several clinical studies have proved the efficacy of therapies with a low dose of cytokines subjected to kinetic activation, while no in vitro data are available. To fill this gap, we investigated whether low concentrations, in the femtogram range, of kinetically activated IFN-γ modulate the behavior of Jurkat cells, a widely used experimental model that has importantly contributed to the present knowledge about T cell signaling. In parallel, IFN-γ in the nanogram range was used and shown to activate Signal transducer and activator of transcription (STAT)-1 and then to induce suppressor of cytokine signaling-1 (SOCS-1), which inhibits downstream signaling. When added together, femtograms of IFN-γ interfere with the transduction cascade activated by nanograms of IFN-γ by prolonging the activation of STAT-1 through the downregulation of SOCS-1. We conclude that femtograms of IFN-γ exert an immunomodulatory action in Jurkat cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751316 | PMC |
http://dx.doi.org/10.3390/ijms18122715 | DOI Listing |
J Therm Biol
August 2025
Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada. Electronic address:
Extreme temperature fluctuations during routine handling and shipping of cryopreserved cell products significantly compromise product quality in ways that extend beyond the duration and peak temperature of the fluctuation. The type of cryoprotectant used and the initial ice nucleation temperature influence ice crystal growth during rewarming events, in turn impacting cell survival. Using a cryomicroscope together with temperature profiles recorded in cord-blood units, ice crystal growth was tracked through five transient-warming events (TWEs) that peaked at -30 °C, -20 °C, or -10 °C.
View Article and Find Full Text PDFUltrastruct Pathol
September 2025
Department of Microbiology and Immunology, Northeast Ohio Medical University, Rootstown, OH, USA.
Efficient transcriptional activation and replication of the human immunodeficiency virus (HIV-1) is dependent on Tat protein. Initial observations have shown that human leukemia T lymphocytes (Jurkat cells aka Wild type or WT) transfected with plasmid as Control (CTJ) cells, and CTJ transfected by electroporation with (TJ cells) showed growth and maintenance resulting in giant and small cells with accumulated corpses. The lack of fine structure in Jurkat cells and both transfected cells aimed at us to verify their respective ultrastructure modifications.
View Article and Find Full Text PDFJ Immunol Methods
August 2025
Cell Signaling Technology, Inc., Danvers, MA, USA.
Background: Chimeric Antigen Receptor (CAR)-T cell therapy is a highly innovative form of cell-based immunotherapy. To expand CAR-T therapies into additional disease indications, identification of novel tumor antigens and grafting of CARs on other types of immune cells, such as macrophages and natural killer (NK) cells are being pursued. Therefore, as this treatment modality continues to evolve, there is a need for highly specific detection reagents to interrogate CAR surface expression.
View Article and Find Full Text PDFCancer Genomics Proteomics
August 2025
Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil;
Background/aim: Cell lines serve as valuable models to study altered cellular signaling pathways, to identify mutations in key oncogenic genes, and to test potential antitumor drugs. The Jurkat cell line, for example, has provided important information about various signaling pathways in lymphoblastic leukemia, establishing most of what is currently known about T-cell receptor (TCR) signaling. However, many aspects of the genome modification of this cell line have not yet been analyzed.
View Article and Find Full Text PDFLab Chip
August 2025
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.
Microfluidic impedance flow cytometry has functioned as an enabling instrument in single-cell analysis, which, however, suffers from the limiting tradeoff between high sensitivity and clogging-free operation. In order to address this issue, this study presented a microfluidic impedance flow cytometer based on three-dimensional (3D) hydrodynamic focusing, in which the crossflow of conductive sample fluids and insulating sheath fluids was leveraged to centralize and restrict electric field lines to the sample fluid, thereby achieving high impedance sensitivity of single cells without the concern of channel blockage. Different from conventional impedance flow cytometry, in this study, impedance amplitude dips (rather than pulse singles) generated by single microparticles traveling through the 3D hydrodynamic focusing region were experimentally validated using microbeads.
View Article and Find Full Text PDF