98%
921
2 minutes
20
The surface molecular imprinting technique has been proposed as a prospective strategy for template molecule recognition and separation by devising the recognition sites on the surface of imprinted materials. The purpose of this study was to establish a novel drug delivery system which was developed by surface molecular imprinting method using β-cyclodextrin (β-CD)-grafted chitosan (CS) (CS-g-β-CD) microspheres as matrix and sinomenine hydrochloride (SM) as the template molecule. By adjusting the amount of functional monomer and cross-linking agent, we got the more excellent adsorption of CS-g-β-CD molecularly imprinted polymers (MIPs-CS-g-β-CD). When the amount of functional monomer was 6 mmol and cross-linking agent was 20 mmol, the maximum binding capacity of MIPs and non-imprinted polymers (NIPs) was 55.9 mg/g and 37.2 mg/g, respectively. The results indicated that the recognition of SM with MIPs was superior to NIPs. The adsorption isotherms of MIPs-CS-g-β-CD indicated that the adsorption behavior fitted better to the Langmuir model, which showed that the adsorption process of polymer was monomolecular layer. In in vitro drug release studies, the accumulative release amount of MIPs-CS-g-β-CD was up to 78% within 24 h. MIPs exhibited an excellent controlled SM release profile without burst release and the mechanism of SM release was shown to conform to non-Fick diffusion. Therefore, MIPs-CS-g-β-CD were successfully applied to extraction of SM and used as the materials for drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-017-2658-2 | DOI Listing |
Food Chem
September 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
The residues of antiviral drugs acyclovir (ACV), penciclovir (PCV) and ganciclovir (GCV) in foods, particularly in ready-to-eat products, pose a significant threat to human health, making it urgent to develop a rapid and sensitive method for their detection. Herein, we designed a novel magnetic molecularly imprinted three-dimensional covalent organic framework (MICOF@FeO) for selective extraction of these antiviral drugs from complicated food matrix. The prepared MICOF@FeO integrates molecular recognition ability, 3D COF structural advantages and magnetic responsiveness, providing high selectivity, large adsorption capacity and facile operation for magnetic solid-phase extraction (MSPE).
View Article and Find Full Text PDFAnal Chem
September 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:
Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.
The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.
View Article and Find Full Text PDF