Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The protein sequences found in nature represent a tiny fraction of the potential sequences that could be constructed from the 20-amino-acid alphabet. To help define the properties that shaped proteins to stand out from the space of possible alternatives, we conducted a systematic computational and experimental exploration of random (unevolved) sequences in comparison with biological proteins. In our study, combinations of secondary structure, disorder, and aggregation predictions are accompanied by experimental characterization of selected proteins. We found that the overall secondary structure and physicochemical properties of random and biological sequences are very similar. Moreover, random sequences can be well-tolerated by living cells. Contrary to early hypotheses about the toxicity of random and disordered proteins, we found that random sequences with high disorder have low aggregation propensity (unlike random sequences with high structural content) and were particularly well-tolerated. This direct structure content/aggregation propensity dependence differentiates random and biological proteins. Our study indicates that while random sequences can be both structured and disordered, the properties of the latter make them better suited as progenitors (in both in vivo and in vitro settings) for further evolution of complex, soluble, three-dimensional scaffolds that can perform specific biochemical tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684393PMC
http://dx.doi.org/10.1038/s41598-017-15635-8DOI Listing

Publication Analysis

Top Keywords

random sequences
16
random
9
sequences
9
protein sequences
8
biological proteins
8
proteins study
8
secondary structure
8
random biological
8
sequences high
8
proteins
5

Similar Publications

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Gut microbiota dysbiosis in people living with HIV who have cancer: novel insights and diagnostic potential.

Front Immunol

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).

View Article and Find Full Text PDF

Background: Increasing evidence suggests a potential role of the gut microbiota in Parkinson's disease (PD). However, the relationship between the gut microbiome (GM) and PD dementia (PDD) remains debated, with their causal effects and underlying mechanisms not yet fully understood.

Methods: Utilizing data from large-scale genome-wide association studies (GWASs), this study applied bidirectional and mediating Mendelian randomization (MR) to investigate the causal relationship and underlying mechanisms between the GM and PDD.

View Article and Find Full Text PDF

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Background: Adolescents with autism spectrum disorder (ASD) often experience identity confusion, social difficulties, and internalizing symptoms such as anxiety and depression. Physical activity offers opportunities for peer interaction and teamwork, which may help alleviate negative emotions. This study aims to investigate the pathways through which physical activity influences internalizing problems in adolescents with ASD.

View Article and Find Full Text PDF