98%
921
2 minutes
20
Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670234 | PMC |
http://dx.doi.org/10.1038/s41467-017-01375-w | DOI Listing |
J Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDFSAR QSAR Environ Res
August 2025
Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China.
Phosphorylation plays an important role in the activity of CDK2 and inhibitor binding, but the corresponding molecular mechanism is still insufficiently known. To address this gap, the current study innovatively integrates molecular dynamics (MD) simulations, deep learning (DL) techniques, and free energy landscape (FEL) analysis to systematically explore the action mechanisms of two inhibitors (SCH and CYC) when CDK2 is in a phosphorylated state and bound state of CyclinE. With the help of MD trajectory-based DL, key functional domains such as the loops L3 loop and L7 are successfully identified.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDFFront Neurosci
August 2025
Cell Signaling Laboratory, Institute of Experimental Medicine, Universidad Central de Venezuela, Caracas, Venezuela.
In our current view of reality, free will hangs on two opposing forces. On one side, we have determinism, which states that everything is already determined by our inner constituents, the atoms and molecules that form our bodies. On the other side, we have quantum mechanics and its view that everything in the quantum world is inherently random and probabilistic.
View Article and Find Full Text PDF