Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac stem cell (CSC) therapy is a promising approach to treat ischemic heart disease. However, the poor survival of transplanted stem cells in the ischemic myocardium has been a major impediment in achieving an effective cell-based therapy against myocardial infarction. Inhibiting mitochondrial fission has been shown to promote survival of several cell types. However, the role of mitochondrial morphology in survival of human CSC remains unknown. In this study, we investigated whether mitochondrial division inhibitor-1 (Mdivi-1), an inhibitor of mitochondrial fission protein dynamin-related protein-1 (Drp1), can improve survival of a novel population of human W8B2 CSCs in hydrogen peroxide (HO)-induced oxidative stress and simulated ischemia-reperfusion injury models. Mdivi-1 significantly reduced HO-induced cell death in a dose-dependent manner. This cytoprotective effect was accompanied by an increased proportion of cells with tubular mitochondria, but independent of mitochondrial membrane potential recovery and reduction of mitochondrial superoxide production. In simulated ischemia-reperfusion injury model, Mdivi-1 given as a pretreatment or throughout ischemia-reperfusion injury significantly reduced cell death. However, the cytoprotective effect of Mdivi-1 was not observed when given at reperfusion. Moreover, the cytoprotective effect of Mdivi-1 in the simulated ischemia-reperfusion injury model was not accompanied by changes in mitochondrial morphology, mitochondrial membrane potential, or mitochondrial reactive oxygen species production. Mdivi-1 also did not affect mitochondrial bioenergetics of intact W8B2 CSCs. Taken together, these experiments demonstrated that Mdivi-1 treatment of human W8B2 CSCs enhances their survival and can be employed to improve therapeutic efficacy of CSCs for ischemic heart disease.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2017.0157DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
20
simulated ischemia-reperfusion
16
human w8b2
12
w8b2 cscs
12
mitochondrial
10
mdivi-1
8
cardiac stem
8
stem cells
8
oxidative stress
8
stress simulated
8

Similar Publications

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.

View Article and Find Full Text PDF

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF