Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug-loaded erythrocytes have been proposed for the treatment of disease. A common way to load drugs into erythrocytes is to apply osmotic shock. Currently, osmosis-based drug encapsulation is studied mainly experimentally, whereas a related theoretical model is still incomplete. In this study, a set of equations is developed to simulate the osmosis-based drug-encapsulation process. First, the modeling is validated with hemolysis rates and the drug-loaded quantities to be found in the literature. Then, the variation of the erythrocyte volume, formation of the pore on the erythrocyte membrane, and quantities of drug loaded into and hemoglobin released from erythrocytes are studied. Finally, an optimized operating condition for encapsulating drugs is proposed. The results show that the volume of erythrocytes exposed to hypotonic NaCl solution increases first and then abruptly decreases because of the pore formation; afterwards, it again increases and then decreases slowly. In the presence of the pore, the drug is loaded by diffusion, whereas the leak-induced convection goes against the loading. For an allowed 45% hemolysis rate, with a 10% hematocrit, the optimized NaCl concentration is 0.44%, the optimized time for sealing the loaded erythrocytes with hypertonic NaCl solution is at 6.5 s, and the quantity of albumin (drug) loaded is 4.5 mg/ml cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-017-1255-1DOI Listing

Publication Analysis

Top Keywords

drug loaded
12
osmosis-based drug
8
drug encapsulation
8
nacl solution
8
erythrocytes
6
drug
5
simulation osmosis-based
4
encapsulation erythrocytes
4
erythrocytes drug-loaded
4
drug-loaded erythrocytes
4

Similar Publications

Antitumor Effects of Doxorubicin-Loaded Cellulose Nanoparticles in the Rabbit VX2 Liver Tumor Model.

Cardiovasc Intervent Radiol

September 2025

Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.

Purpose: To evaluate the preclinical efficacy and safety of transarterial chemoembolization (TACE) using doxorubicin-loaded biocompatible cellulose nanoparticles in a rabbit VX2 liver tumor model.

Materials And Methods: Following institutional animal care committee approval, 23 rabbits with VX2 liver tumors were randomized into three groups: Group A (n = 9) received doxorubicin-loaded cellulose nanoparticles with ethiodized oil; Group B (n = 9) received doxorubicin with ethiodized oil; and Group C (n = 5) served as untreated controls. Tumor size was monitored via ultrasound for 4 weeks, and serum liver enzymes (aspartate transaminase and alanine transaminase) were measured on days 1, 3, and 7 to assess hepatotoxicity.

View Article and Find Full Text PDF

Microgel-Crosslinked, thermo- and mechano- dual Responsive, Ketoprofen-Loaded hydrogels with high mechanical properties and rapid response.

Int J Pharm

September 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit

Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid malignancy and currently lacks effective treatment options. While anti-PD1 therapy has shown remarkable clinical results in some cases, only a subset of ATC patients responds to it. Eganelisib (IPI549), a highly selective PI3Kγ inhibitor, can alleviate the tumor immunosuppressive state by reducing the proportion of M2-like tumor associated macrophages, partially overcoming patient resistance to anti-PD1 therapy and synergizing with its efficacy.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF