98%
921
2 minutes
20
Purpose: Our goal is to develop a model-based approach for CT dose estimation. We previously presented a CT dose estimation method that offered good accuracy in soft tissue regions but lower accuracy in bone regions. In this work, we propose an improved physic-based approach to achieve high accuracy for any materials and realistic clinical anatomies.
Methods: Like Monte Carlo techniques, we start from a model or image of the patient and we model all relevant x-ray interaction processes. Unlike Monte Carlo techniques, we do not track each individual photon, but we compute the average behavior of the x-ray interactions, combining pencil-beam calculations for the first-order interactions and kernels for the higher order interactions. The new algorithm more accurately models the variation of materials in the human body, especially for higher attenuation materials such as bone, as well as the various x-ray attenuation processes. We performed validation experiments with analytic phantoms and a polychromatic x-ray spectrum, comparing to Monte Carlo simulation (GEANT4) as the ground truth.
Results: The results show that the proposed method has improved accuracy in both soft tissue region and bone region: less than 6% voxel-wise errors and less than 3.2% ROI-based errors in an anthropomorphic phantom. The computational cost is on the order of a low-resolution filtered backprojection reconstruction.
Conclusions: We introduced improved physics-based models in a fast CT dose reconstruction approach. The improved approach demonstrated quantitatively good correspondence to a Monte Carlo gold standard in both soft tissue and bone regions in a chest phantom with a realistic polychromatic spectrum and could potentially be used for real-time applications such as patient- and organ-specific scan planning and organ dose reporting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.12409 | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
Despite global phase-out initiatives, legacy polychlorinated biphenyls (PCBs) remobilize in marine ecosystems as secondary emission sources, posing ecotoxicological and human health risks emerge through cross-trophic dietary exposure pathways. This study aimed to systematically examined the distribution, trophic transfer properties, and health risks of PCBs in six fish and eight invertebrate species from the Beibu Gulf in southern China, by stable isotope analysis, hierarchical cluster analysis, and Monte Carlo simulation. The ΣPCBs concentrations ranged from 0.
View Article and Find Full Text PDFBiol Trace Elem Res
September 2025
Laboratório de Testes Farmacológicos E Toxicológicos - LEFT, Universidade Federal Do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8 Bairro Carreiros, CEP 96203-900, Rio Grande, Rio Grande Do Sul, Brasil.
This study aimed to evaluate fluoride concentrations in a variety of commonly consumed teas and Herbal infusions in Brazil and assess potential Health risks associated with their ingestion. A total of 21 samples were analyzed, including 12 loose-leaf and 9 commercially bagged products. Fluoride quantification was performed using a validated spectrophotometric method, and a deterministic and probabilistic human Health risk assessment was conducted.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Cancer Treatment and Nuclear Cardiology Department, Al Azhar University, Cairo, Egypt.
Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Department of Physics, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, USA.
A method is presented for determining the significant parameters, maximum wind speed and radius of maximum wind speed, of the surface winds associated with a hurricane. The method is based on Bayesian inversion, using Markov chain Monte Carlo sampling. Underwater acoustic measurements are used to estimate parameters in the axisymmetric Holland model for hurricane surface winds.
View Article and Find Full Text PDFChaos
September 2025
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China.
Vibro-impact systems exhibit non-smooth characteristics and pose significant challenges for analysis. Non-smooth coordinate transformations are widely recognized for their ability to convert vibro-impact systems into systems with continuous trajectories, thereby enabling the application of some classical methods. This paper introduces an improved non-smooth coordinate transformation method [Su et al.
View Article and Find Full Text PDF