Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFv) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. The Tand-scFv was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min. Fluorescence cell tracking, cell infiltration studies, echocardiographic and histological analyses were performed. Treatment of mice undergoing myocardial infarction with targeted-PBMCs led to successful cell delivery to the ischemic-reperfused myocardium, followed by a significant decrease in infiltration of inflammatory cells. Homing of targeted-PBMCs as shown by fluorescence cell tracking ultimately decreased fibrosis, increased capillary density, and restored cardiac function 4 weeks after ischemia-reperfusion injury. Tand-scFv is a promising candidate to enhance therapeutic cell delivery in order to promote myocardial regeneration and thereby preventing heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595126PMC
http://dx.doi.org/10.7150/thno.19698DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
12
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
cardiac function
8
cell
8
fluorescence cell
8
cell tracking
8
cell delivery
8
platelet-targeted delivery
4

Similar Publications

Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.

View Article and Find Full Text PDF

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF

Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from , and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated.

View Article and Find Full Text PDF

Protection of the Endothelium and Endothelial Glycocalyx by Albumin and Sulodexide in Porcine Model of Kidney Transplant.

Exp Clin Transplant

August 2025

>From the Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czechia; and the Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia.

Objectives: Kidney transplant is a life-saving procedure for patients with end-stage renal disease. Success of kidney transplant is highly dependent on maintaining the integrity of the endothelium and its protective layer, the endothelial glycocalyx. Ischemia-reperfusion injury, a common challenge in kidney transplant, can disrupt the endothelial glycocalyx, leading to various post-transplant complications.

View Article and Find Full Text PDF