98%
921
2 minutes
20
The heating effect on the adhesion property of plasma-treated polytetrafluoroethylene (PTFE) was examined. For this purpose, a PTFE sheet was plasma-treated at atmospheric pressure while heating using a halogen heater. When plasma-treated at 8.3 W/cm without using the heater (Low-P), the surface temperature of Low-P was about 95 °C. In contrast, when plasma-treated at 8.3 W/cm while using the heater (Low-P+Heater), the surface temperature of Low-P+Heater was controlled to about 260 °C. Thermal compression of the plasma-treated PTFE with or without heating and isobutylene-isoprene rubber (IIR) was performed, and the adhesion strength of the IIR/PTFE assembly was measured via the T-peel test. The adhesion strengths of Low-P and Low-P+Heater were 0.12 and 2.3 N/mm, respectively. Cohesion failure of IIR occurred during the T-peel test because of its extremely high adhesion property. The surfaces of the plasma-treated PTFE with or without heating were investigated by the measurements of electron spin resonance, X-ray photoelectron spectroscopy, nanoindentation, scanning electron microscopy, and scanning probe microscopy. These results indicated that heating during plasma treatment promotes the etching of the weak boundary layer (WBL) of PTFE, resulting in a sharp increase in the adhesion property of PTFE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573392 | PMC |
http://dx.doi.org/10.1038/s41598-017-09901-y | DOI Listing |
J Prosthodont Res
September 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: This study aimed to evaluate the performance of 3D-printed denture base resins (DBRs) compared with conventionally printed DBRs, examine their biofilm formation and physical properties, and determine the viability of 3D-printed DBRs as a superior alternative in removable prosthodontics.
Methods: The DBR samples were fabricated using traditional packing (TRA), milling (MIL), and 3D printing (3DP) methods. All samples were serially polished with an abrasive paper.
Int J Biol Macromol
September 2025
Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien
Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China. Electronic address:
Traditional phenolic resin adhesives involve the use of petrochemical-based phenol, raising environmental and health concerns. In this study, lignin was demethylated to substitute for phenol and prepare a high-lignin-content adhesive with perfect shear strength performance. The hydroxyl content of demethylated lignin can reach up to 6.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark. Electronic address:
Electric fields significantly influence bacterial cells by altering their physiology, membrane properties, membrane potential, and permeability, as well as their metabolism and mobility. These interactions result in observable changes in growth rates, cellular morphology, and gene expression. This review provides a comprehensive examination of the effects of electric fields on bacterial cells, focusing specifically on mechanisms such as electro-stimulation, electroporation, electrophoresis, and dielectrophoresis.
View Article and Find Full Text PDFLangmuir
September 2025
College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, P. R. China.
The regulation of droplet dynamics based on external electric fields and bioinspired functional surfaces has widespread applications in various fields. However, research on the coupling of these two factors to enhance oil-water separation efficiency is urgently needed. In this study, laser-induced and solvent treatment techniques were coupled to assemble a micronano setal and bioinspired beetle elytra textured substrate with the lotus effect, A "top conductive, bottom insulating" Desert beetle elytra micronano tuft composite texture (DBE) biomimetic superhydrophobic surface was fabricated.
View Article and Find Full Text PDF