98%
921
2 minutes
20
The dimensional characterization of insoluble, inorganic particles, such as zinc oxide ZnO, dispersed in cosmetic or pharmaceutical formulations, is of great interest considering the current need of declaring the possible presence of nanomaterials on the label of commercial products. This work compares the separation abilities of Centrifugal- and Asymmetrical Flow Field-Flow Fractionation techniques (CF3 and AF4, respectively), equipped with UV-vis, MALS and DLS detectors, in size sorting ZnO particles, both as pristine powders and after their extraction from cosmetic matrices. ZnO particles, bare and superficially modified with triethoxycaprylyl silane, were used as test materials. To identify the most suitable procedure necessary to isolate the ZnO particles from the cosmetic matrix, two O/W and two W/O emulsions were formulated on purpose. The suspensions, containing the extracted particles ZnO, were separated by both Field-Flow Fractionation (FFF) techniques to establish a common analysis protocol, applicable for the analysis of ZnO particles extracted from three commercial products, sold in Europe for the baby skin care. Key aspects of this study were the selection of an appropriate dispersing agent enabling the particles to stay in stable suspensions (>24h)and the use of multiple detectors (UV-vis, MALS and DLS) coupled on-line with the FFF channels, to determine the particle dimensions without using the retention parameters. Between the two FFF techniques, CF3 revealed to be the most robust one, able to sort all suspensions created in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2017.07.098 | DOI Listing |
Biomater Adv
August 2025
Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta 577451, Karnataka, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemoresistance. Nano-bioconjugates, due to their enhanced surface-to-volume ratio, offer significant potential in cancer therapy. In this study, we synthesized ZnO nanoparticles (NPs) using solution combustion method and exhibited a particle size range of 20-70 nm as confirmed by TEM analysis.
View Article and Find Full Text PDFAnticancer Agents Med Chem
August 2025
Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
Introduction: Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Zhejiang Key Laboratory of Low-carbon Control Technology for Industrial Pollution, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangz
The continuous accumulation of metallic nanoparticles and pesticide residues in agroecosystems poses potential risks to food safety and plant health, yet their potential interactive toxicity remains poorly understood. Here, we investigated the mutual effects of zinc oxide nanoparticles (ZnONPs) and the imidacloprid (IMI) on their bioaccumulation, phytotoxicity and the underlying molecular mechanisms in lettuce. After 14 days of exposure, co-exposure to ZnONPs and IMI significantly aggravated phytotoxicity compared to individual treatments, as evidenced by greater biomass reduction, elevated oxidative stress, and intensified metabolic disruptions.
View Article and Find Full Text PDFChem Biomed Imaging
August 2025
Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States.
Defect-mediated energy transfer (EnT) is a radiative process that occurs between donor defect states in the forbidden bandgap of semiconductor nanocrystals (NCs) and dye molecules bound to their surfaces. The EnT efficiency depends on the number of dye molecules attached to each NC, the donor-acceptor distance, and the dipole orientation factor between the donor and acceptor, all of which vary across individual NCs in a sample. While ensemble-level fluorescence spectroscopy measurements have provided values for donor-acceptor distances, dye-to-NC ratios, and EnT rate constants, questions remain about the impact of donor/acceptor heterogeneity on observed EnT efficiencies.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Zoology, BLDEA's SB Arts & KCP Science College, Vijayapura 586103, India.
The determination of cortisol is the most important aspect to monitor the stress level of human beings. Currently, cortisol levels are monitored through blood samples. However, multiple sampling and frequent monitoring are highly difficult.
View Article and Find Full Text PDF