Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design.
View Article and Find Full Text PDFAlthough nanoplastics are a widespread pollutant, their characterization and quantification in environmental samples remains challenging with no standard approach currently available. Here, we describe a novel workflow for nanoplastic analysis in environmental water samples, incorporating asymmetrical flow field-flow fractionation with multiangle light scattering (AF4-MALS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) in an offline combination. The techniques complement each other as AF4-MALS enables sample cleanup and size separation down to about 1 nm, while Py-GC-MS identifies and quantifies polymers in each size fraction.
View Article and Find Full Text PDFJ Synchrotron Radiat
July 2025
Biological small-angle X-ray scattering (SAXS) is a versatile and powerful technique for investigating the structural and biophysical properties of biologically and pharmaceutically relevant macromolecules and nanoparticles. SAXS offers detailed insights into macromolecular composition, size, shape and internal structure, while addressing key aspects such as oligomeric state, stability, molecular interactions, and conformational flexibility. Recently, asymmetrical-flow field-flow fractionation (AF4) was successfully coupled to SAXS, enabling online size-based fractionation and analysis of polydisperse samples.
View Article and Find Full Text PDFCells change their metabolic profiles in response to underlying gene regulatory networks, but how can alterations in metabolism encode specific transcriptional instructions? Here, we show that forcing a metabolic change in embryonic stem cells (ESCs) promotes a developmental identity that better approximates the inner cell mass (ICM) of the early mammalian blastocyst in cultures. This shift in cellular identity depends on the inhibition of glycolysis and stimulation of oxidative phosphorylation (OXPHOS) triggered by the replacement of D-glucose by D-galactose in ESC media. Enhanced OXPHOS in turn activates NAD + -dependent deacetylases of the Sirtuin family, resulting in the deacetylation of histones and key transcription factors to focus enhancer activity while reducing transcriptional noise, which results in a robustly enhanced ESC phenotype.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2025
The strategic objective of the Safe and sustainable by design of next generation chemicals and materials (SSbD4CheM) project is to develop screening and testing strategies for a variety of substances and materials to ensure safer and more sustainable products in line with the Sustainable Products Initiative. SSbD4CHeM is focusing on chemical safety using new approach methods, including studies without animal models and tools. Additionally, it integrates environmental sustainability for the implementation of the Safe and Sustainable by Design (SSbD) framework including risk assessment and life cycle assessment.
View Article and Find Full Text PDFJoint damage caused by immune-mediated inflammation in rheumatoid arthritis (RA) preferentially affects site-specific mechano-sensitive areas. The perception of physical forces in the synovial tissue by the residing fibroblasts initiates signalling responses with impact on cellular functions. Here, we describe a mechanotransduction pathway in rheumatoid arthritis synovial fibroblasts (RASF), which is critically dependent on the disintegrin metalloproteinase ADAM15 and N-cadherin (NCAD).
View Article and Find Full Text PDFMicro- and nanoscale plastics (MnPs), arising from the environmental degradation of plastic waste, pose significant environmental and health risks as carriers for potentially toxic element (PTE) metals. This study employs asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) to provide a size-resolved assessment of chromium (Cr), arsenic (As), and selenium (Se) adsorption onto carboxylated polystyrene nanoparticles (COOH-PSNPs) of 100 nm, 500 nm, and 1000 nm. Cr exhibited the highest adsorption, with adsorption per particle surface area increasing from 9.
View Article and Find Full Text PDFCommun Biol
September 2024
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material.
View Article and Find Full Text PDFMol Syst Biol
August 2024
Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time.
View Article and Find Full Text PDFIn common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry.
View Article and Find Full Text PDFRMD Open
February 2024
Objective: Interim analysis of the RELIANCE registry, an on-going, non-interventional, open-label, multicentre, prospective study evaluating the long-term safety, dosing regimens and effectiveness of canakinumab in patients with cryopyrin-associated periodic syndromes (CAPS), familial Mediterranean fever (FMF), tumour-necrosis factor receptor-associated periodic syndrome (TRAPS) or mevalonate-kinase deficiency (MKD)/hyperimmunoglobulin-D syndrome (HIDS).
Methods: From September 2017 for patients with CAPS, and June 2018 for patients with FMF, TRAPS or MKD/HIDS, the registry enrolled paediatric (aged ≥2 years) and adult patients (aged ≥18 years) receiving canakinumab as part of their routine medical care. Safety, canakinumab dose, disease activity and quality of life outcome measures were evaluated at baseline and every 6 months until end of study visit.
J Control Release
March 2024
The availability of analytical methods for the characterization of lipid nanoparticles (LNPs) for in-vivo intracellular delivery of nucleic acids is critical for the fast development of innovative RNA therapies. In this study, analytical protocols to measure (i) chemical composition, (ii) drug loading, (iii) particle size, concentration, and stability as well as (iv) structure and morphology were evaluated and compared based on a comprehensive characterization strategy linking key physical and chemical properties to in-vitro efficacy and toxicity. Furthermore, the measurement protocols were assessed either by testing the reproducibility and robustness of the same technique in different laboratories, or by a correlative approach, comparing measurement results of the same attribute with orthogonal techniques.
View Article and Find Full Text PDFMol Cell Proteomics
February 2024
Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals.
View Article and Find Full Text PDFThe calculation of aggregated composite measures is a widely used strategy to reduce the amount of data on hospital report cards. Therefore, this study aims to elicit and compare preferences of both patients as well as referring physicians regarding publicly available hospital quality information METHODS: Based on systematic literature reviews as well as qualitative analysis, two discrete choice experiments (DCEs) were applied to elicit patients' and referring physicians' preferences. The DCEs were conducted using a fractional factorial design.
View Article and Find Full Text PDFFrom a thermodynamic point of view, all clocks are driven by irreversible processes. Additionally, one can use oscillatory systems to temporally modulate the thermodynamic flux towards equilibrium. Focusing on the most elementary thermalization events, this modulation can be thought of as a temporal probability concentration for these events.
View Article and Find Full Text PDFCellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging.
View Article and Find Full Text PDFIn order to unitarily evolve a quantum system, an agent requires knowledge of time, a parameter that no physical clock can ever perfectly characterize. In this Letter, we study how limitations on acquiring knowledge of time impact controlled quantum operations in different paradigms. We show that the quality of timekeeping an agent has access to limits the circuit complexity they are able to achieve within circuit-based quantum computation.
View Article and Find Full Text PDFAnal Bioanal Chem
November 2023
Recent advances have rekindled the interest in ion mobility as an additional dimension of separation in mass spectrometry (MS)-based proteomics. Ion mobility separates ions according to their size and shape in the gas phase. Here, we set out to investigate the effect of 22 different post-translational modifications (PTMs) on the collision cross section (CCS) of peptides.
View Article and Find Full Text PDFWe present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2023
"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar.
View Article and Find Full Text PDFIn Vitro Model
November 2023
Purpose: Cellulose nanocrystals (CNC) play a promising role in the development of new advanced materials. The growing demand of CNC-containing products in the food industry will lead to an increased human exposure through oral uptake. To date, there is a dearth of studies reporting on the risks which CNC pose to human health following ingestion.
View Article and Find Full Text PDFWe report an online analytical platform based on the coupling of asymmetrical flow field-flow fractionation (AF4) and native mass spectrometry (nMS) in parallel with UV-absorbance, multi-angle light scattering (MALS), and differential-refractive-index (UV-MALS-dRI) detectors to elucidate labile higher-order structures (HOS) of protein biotherapeutics. The technical aspects of coupling AF4 with nMS and the UV-MALS-dRI multi-detection system are discussed. The "slot-outlet" technique was used to reduce sample dilution and split the AF4 effluent between the MS and UV-MALS-dRI detectors.
View Article and Find Full Text PDFA comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies.
View Article and Find Full Text PDFThe major tasks of the immune system are protection against infectious agents, maintaining homeostasis by recognizing and neutralizing noxious substances from the environment, and monitoring pathological, e.g. neoplastic tissue changes.
View Article and Find Full Text PDFIn this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application.
View Article and Find Full Text PDF