Importance of ICPMS for speciation analysis is changing: future trends for targeted and non-targeted element speciation analysis.

Anal Bioanal Chem

Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article is aimed at researchers interested in organic molecules which contain a heteroatom but who have never considered using inductively coupled plasma mass spectrometry (ICPMS) or who have used ICPMS for years and developed numerous methods for analysis of target elemental species. We try to illustrate (1) that ICPMS has been very useful for speciation analysis of metal(loid) target species and that there is now a trend to replace the costly detector with cheaper detection systems for routine target analysis, and (2) that ICPMS has been used and will be used even more in the future for non-targeted analysis of elements which are not normally associated with ICPMS analysis, such as non-metals such as sulfur, phosphorus, chlorine and fluorine. Graphical Abstract Starting with HPLC-ICPMS for non-targeted analysis of heteroatom containing molecules, once target molecule is identified alternative detectors can be used for routine measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775347PMC
http://dx.doi.org/10.1007/s00216-017-0502-8DOI Listing

Publication Analysis

Top Keywords

speciation analysis
12
icpms speciation
8
analysis
8
non-targeted analysis
8
icpms
6
analysis changing
4
changing future
4
future trends
4
trends targeted
4
targeted non-targeted
4

Similar Publications

Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.

View Article and Find Full Text PDF

Stable, treatment-resistant Cu complexes in practical wastewater are frequently neglected. Positively charged lysozyme amyloid fibrils (AF), however, exhibit unexplored potential for their adsorption. This study engineered an amyloid fibril-chitosan composite (AF-CS) xerogel and evaluated its adsorption performance in three systems: free Cu, Cu-Citrate binary, and Cu-EDTA binary.

View Article and Find Full Text PDF

Sorting of ancestral polymorphism and its impact on morphological phylogenetics and macroevolution.

Evolution

September 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2.

Intraspecific phenotypic variation provides the basic substrate upon which the evolutionary processes that give rise to morphological innovation, such as adaptation, operate. Work in living clades has shown standing population-level variation fuels ecological speciation and gives rise to adaptive radiations. Despite its importance in evolutionary biology, the role of intraspecific variation in shaping phylogenetic and macroevolutionary patterns and processes has remained underexplored.

View Article and Find Full Text PDF

For many questions in ecology and evolution, the most relevant data to consider are attributes of lineage pairs. Comparative tests for causal relationships among traits like 'diet niche overlap', 'divergence time', and 'strength of reproductive isolation (RI)' - measured for pairwise combinations of related species or populations - have led to several groundbreaking insights, but the correct statistical approach for these analyses has never been clear. Lineage-pair traits are non-independent, but unlike the expected covariance among species' traits, which is captured by a phylogenetic covariance matrix arising from a given model, the expected covariance among lineage-pair traits has not been explicitly formulated.

View Article and Find Full Text PDF

Speciation analysis of fungi by liquid atmospheric pressure MALDI mass spectrometry.

Anal Bioanal Chem

September 2025

Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6DX, UK.

Fungal pathogens pose a growing threat to global health, necessitating rapid and accurate identification methods. Here, liquid atmospheric pressure matrix-assisted laser desorption/ionisation (LAP-MALDI) mass spectrometry (MS) is applied to fast lipid and protein profiling of Candida albicans and Saccharomyces cerevisiae from cultured colonies. Species-specific lipid profiles were observed in the m/z 600-1100 range, dominated by phospholipids as confirmed by tandem mass spectrometry (MS/MS).

View Article and Find Full Text PDF