Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.

J Biomed Opt

University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United StatesbUniversity of California, Department of Biomedical Engineering, Irvine, California, United States.

Published: July 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518810PMC
http://dx.doi.org/10.1117/1.JBO.22.7.076013DOI Listing

Publication Analysis

Top Keywords

tissue simulating
8
phantoms
8
simulating phantoms
8
solid phantoms
8
water fractions
8
tissue
5
solid tissue
4
phantoms absorption
4
absorption 970 nm
4
970 nm diffuse
4

Similar Publications

Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.

View Article and Find Full Text PDF

Preparation and osteogenic properties of degradable pectin-modified magnesium oxychloride bone cement.

Int J Biol Macromol

September 2025

Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China. Electronic address:

A novel biodegradable bone cement (PSM) was successfully developed through the modification of magnesium oxychloride cement (MOC) with pectin, specifically addressing the inherent limitation of poor water resistance in conventional MOC. Properties of PSM such as washout resistance, setting time, mechanical properties and degradation properties were investigated. Results showed that PSM with 1.

View Article and Find Full Text PDF

Intestinal mucosa-mimetic double-layer gelatin hydrogel for recapitulation of 3D immune microenvironment.

Int J Biol Macromol

September 2025

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

The intestinal immune microenvironment plays a crucial role in regulating systemic immune responses and is implicated in various diseases. Nevertheless, no existing model simultaneously replicates the three-dimensional (3D) immune microenvironment and the mucosal barrier. This study presents a novel mucosa-mimic model that consists of a cell-laden hydrogel matrix and a pseudo-mucus layer that emulate the intestinal lamina propria and mucosal barrier, respectively.

View Article and Find Full Text PDF

Population pharmacokinetics of intravenous ampicillin in awake and anesthetised dogs.

Vet J

September 2025

Inserm U955-IMRB, Equipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", Ecole Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil, F-94700 Maisons-Alfort, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France. Electronic address

The aim of this study is to describe a population pharmacokinetic model for intravenous ampicillin-sulbactam in awake and anaesthetized dogs in these two treatment scenarios and to compute PK/PD cut-offs (PK/PD). This was a prospective clinical trial in 20 client-owned dogs, either treated by ampicillin after post-surgical infection, or in the context of surgical antimicrobial prophylaxis. All animals received 20mg/kg of ampicillin by slow iv route.

View Article and Find Full Text PDF

The aim of this in-vitro study was to verify which field of view (FOV) in cone-beam computed tomography (CBCT) yields greater accuracy in the detection of internal root resorption (IRR) volume, in comparison to the gold standard of micro-computed tomography (micro-CT) and to a physical method. Twenty-five extractedsingle-rooted teeth were scanned by CBCT with two different FOV parameters (6x6-FOV and 10x10-FOV) and via micro-CT. The volume of dental hard tissue was measured on these images.

View Article and Find Full Text PDF