Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Apolipoprotein E (apoE) has an important role in the pathogenesis of Alzheimer's disease with its three isoforms having distinct effects on disease risk. Here, we assessed the conformational differences between those isoforms using a novel flow cytometry-Forster resonance energy transfer (FRET) assay. We showed that the conformation of intracellular apoE within HEK cells and astrocytes adopts a directional pattern; in other words, E4 adopts the most closed conformation, E2 adopts the most open conformation, and E3 adopts an intermediate conformation. However, this pattern was not maintained upon secretion of apoE from astrocytes. Intermolecular interactions between apoE molecules were isoform-specific, indicating a great diversity in the structure of apoE lipoparticles. Finally, we showed that secreted E4 is the most lipidated isoform in astrocytes, suggesting that increased lipidation acts as a folding chaperone enabling E4 to adopt a closed conformation. In conclusion, this study gives insights into apoE biology and establishes a robust screening system to monitor apoE conformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592654PMC
http://dx.doi.org/10.1074/jbc.M117.784264DOI Listing

Publication Analysis

Top Keywords

resonance energy
8
energy transfer
8
closed conformation
8
conformation adopts
8
apoe
7
conformation
6
isoform- cell
4
cell type-specific
4
type-specific structure
4
structure apolipoprotein
4

Similar Publications

We present a method for probing the quantum capacitance associated with the Rydberg transition of surface electrons on liquid helium using radio-frequency (rf) reflectometry. Resonant microwave excitation of the Rydberg transition induces a redistribution of image charges on capacitively coupled electrodes, giving rise to a quantum capacitance originating from adiabatic state transitions and the finite curvature of the energy bands. By applying frequency-modulated resonant microwaves to drive the Rydberg transition, we systematically measured a capacitance sensitivity of 0.

View Article and Find Full Text PDF

Far-Field Excitation of a Photonic Flat Band via a Tailored Anapole Mode.

Phys Rev Lett

August 2025

Xiamen University, College of Physical Science and Technology, School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Ultrafast Laser Technology and Applica

The photonic flat band, defined by minimal dispersion and near-zero group velocity, has facilitated significant advances in optical technologies. The practical applications of flat bands, such as enhanced light-matter interactions, require efficient coupling to far-field radiation. However, achieving controlled coupling between flat bands and their corresponding localized modes with far-field radiation remains challenging and elusive.

View Article and Find Full Text PDF

Active control of flexible spacecraft in orbit based on partial differential equations.

PLoS One

September 2025

Hunan Mingxiang Aviation Technology Co., Ltd., Changsha, Hunan, China.

Flexible spacecraft possess the ability to adapt to complex environments and use energy more efficiently, offering enhanced flexibility and stability in space missions, particularly in tasks with significant external disturbances such as deep space exploration and satellite attitude control. However, vibration suppression in flexible spacecraft remains a critical challenge. This study addresses the problem of vibration suppression in flexible spacecraft systems under external disturbances and input constraints.

View Article and Find Full Text PDF

Evolutionary features of microscopic damage in shale under unloading action.

PLoS One

September 2025

Datong Hongtai Mine Engineering Construction Co., Ltd. of Jinneng Holding Coal Industry Group, Datong, China.

To reveal the microscopic damage evolution law of rocks under the effect of unloading disturbances with different amplitudes, electron microscope scanning, nuclear magnetic resonance (NMR), and triaxial compression tests were carried out. The evolution patterns of surface and internal pore types and mechanical properties of rock specimens after unloading perturbation were analyzed. In this paper, a classification of the ratio of dmax/dmin (dmax and dmin refer to the maximum and minimum pore size of each pore, respectively) is proposed to examine the pore and crack evolution extension development on the surface of the specimen.

View Article and Find Full Text PDF

The unabating discovery of nanoskyrmions in centrosymmetric magnets challenges the conventional Dzyaloshinskii-Moriya (DM) skyrmion stabilization mechanism. We investigate Gd_{2}PdSi_{3} using polarized resonant x-ray scattering and find that the low-field incommensurate modulations are elliptical helices, evolving into spin-density waves at higher fields. Quasi-2D magnetism arises via local DM interactions generated by inversion symmetry breaking around Gd-Gd bonds, which we characterize using atomistic simulations.

View Article and Find Full Text PDF