Publications by authors named "Allyson D Roe"

Apolipoprotein E (APOE) effects on brain function remain controversial. Removal of APOE not only impairs cognitive functions but also reduces neuritic amyloid plaques in mouse models of Alzheimer's disease (AD). Can APOE simultaneously protect and impair neural circuits? Here, we dissociated the role of APOE in AD versus aging to determine its effects on neuronal function and synaptic integrity.

View Article and Find Full Text PDF

Background: Misfolding of microtubule-associated protein tau (MAPT) within neurons into neurofibrillary tangles is an important pathological feature of Alzheimer's disease (AD). Tau pathology correlates with cognitive decline in AD and follows a stereotypical anatomical course; several recent studies indicate that tau pathology spreads inter-neuronally via misfolded tau "seeds." Previous research has focused on neurons as the source of these tau seeds.

View Article and Find Full Text PDF

A synergy between β-amyloid (Aβ) and tau appears to occur in Alzheimer disease (AD), but the mechanisms of interaction, and potential locations, are little understood. This study investigates the possibility of such interactions within the cortical synaptic compartments of APP/PS1 mice. We used label-free quantitative mass spectrometry to study the phosphoproteome of synaptosomes, covering 2400 phosphopeptides and providing an unbiased survey of phosphorylation changes associated with amyloid pathology.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE) is a secreted apolipoprotein with three isoforms, E2, E3, and E4, that binds to lipids and facilitates their transport in the extracellular environment of the brain and the periphery. The E4 allele is a major genetic risk factor for the sporadic form of Alzheimer's disease (AD), and studies of human brain and mouse models have revealed that E4 significantly exacerbates the deposition of amyloid beta (Aβ). It has been suggested that this deposition could be attributed to the formation of soluble ApoE isoform-specific ApoE-Aβ complexes.

View Article and Find Full Text PDF

Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-β deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-β deposition.

View Article and Find Full Text PDF

The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid-liquid phase separation (LLPS) under cellular conditions and that phase-separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho-tau isolated from human Alzheimer brain.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) has an important role in the pathogenesis of Alzheimer's disease with its three isoforms having distinct effects on disease risk. Here, we assessed the conformational differences between those isoforms using a novel flow cytometry-Forster resonance energy transfer (FRET) assay. We showed that the conformation of intracellular apoE within HEK cells and astrocytes adopts a directional pattern; in other words, E4 adopts the most closed conformation, E2 adopts the most open conformation, and E3 adopts an intermediate conformation.

View Article and Find Full Text PDF

The spread of neurofibrillary tangle (NFT) pathology through the human brain is a hallmark of Alzheimer's disease (AD), which is thought to be caused by the propagation of "seeding" competent soluble misfolded tau. "TauC3", a C-terminally truncated form of tau that is generated by caspase-3 cleavage at D421, has previously been observed in NFTs and has been implicated in tau toxicity. Here we show that TauC3 is found in the seeding competent high molecular weight (HMW) protein fraction of human AD brain.

View Article and Find Full Text PDF

Amyloid plaques and neurofibrillary tangles co-occur in Alzheimer disease, but with different topological and temporal patterns. Whether these two lesions are independent or pathobiologically related is uncertain. For example, amyloid deposition in the neocortex precedes the spread of tau neurofibrillary tangles from the limbic areas to the cortex.

View Article and Find Full Text PDF

The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro.

View Article and Find Full Text PDF

Objective: To better understand cross-sectional relationships between CSF and PET measures of tau pathology, we compared regional and global measures of (18)F-T807 (AV-1451) PET to CSF protein levels of total tau (t-tau), phosphorylated tau (p-tau), and β-amyloid 1-42 (Aβ42).

Methods: T-tau, p-tau, and Aβ42 levels were assessed using INNOTEST xMAP immunoassays. Linear regression was used to compare regional and global measures of (18)F-T807 standardized uptake value ratios (SUVR) to CSF protein levels using data from 31 cognitively unimpaired elderly participants in the Harvard Aging Brain study.

View Article and Find Full Text PDF

Objective: Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or, in fact, a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in the postmortem AD brain and can be taken up by neurons and seed aggregates.

View Article and Find Full Text PDF

Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices.

View Article and Find Full Text PDF

Stress exposure and the corticotropin-releasing factor (CRF) system have been implicated as mechanistically involved in both Alzheimer's disease (AD) and associated rodent models. In particular, the major stress receptor, CRF receptor type 1 (CRFR1), modulates cellular activity in many AD-relevant brain areas, and has been demonstrated to impact both tau phosphorylation and amyloid-β (Aβ) pathways. The overarching goal of our laboratory is to develop and characterize agents that impact the CRF signaling system as disease-modifying treatments for AD.

View Article and Find Full Text PDF

Introduction: Little is known about the utility of plasma amyloid beta (Aβ) in clinical trials of Alzheimer's disease (AD).

Methods: We analyzed longitudinal plasma samples from two large multicenter clinical trials: (1) donezepil and vitamin E in mild cognitive impairment (n = 405, 24 months) and (2) simvastatin in mild to moderate AD (n = 225, 18 months).

Results: Baseline plasma Aβ was not related to cognitive or clinical progression.

View Article and Find Full Text PDF

Clinical and basic science research suggests that stress and/or changes in central stress signaling intermediates may be involved in Alzheimer's disease (AD) pathogenesis. Although the links between stress and AD remain unsettled, data from our group and others have established that stress exposure in rodents may confer susceptibility to AD pathology by inducing hippocampal tau phosphorylation (tau-P). Work in our laboratory has shown that stress-induced tau-P requires activation of the type-1 corticotropin-releasing factor receptor (CRFR1).

View Article and Find Full Text PDF

Neurofibrillary tangles (NFTs), a marker of neuronal alterations in Alzheimer's disease (AD) and other tauopathies, are comprised of aggregates of hyperphosphorylated tau protein. We recently studied the formation of NFTs in the entorhinal cortex (EC) and their subsequent propagation through neural circuits in the rTgTauEC mouse model (de Calignon et al., 2012).

View Article and Find Full Text PDF

There is a growing body of evidence that soluble oligomeric forms of amyloid β (Aβ) play a critical role in Alzheimer's disease (AD). Despite the importance of soluble Aβ oligomers as a therapeutic target for AD, the dynamic metabolism of these Aβ species in vivo has not been elucidated because of the difficulty in monitoring brain Aβ oligomers in living animals. Here, using a unique large pore-sized membrane microdialysis, we characterized soluble Aβ oligomers in brain interstitial fluid (ISF) of awake, freely moving APP/PS1 transgenic and control WT mice.

View Article and Find Full Text PDF

Clinical studies suggest that exposure to stress can increase risk for Alzheimer's disease (AD). Although the precise links between stress and vulnerability to develop AD remain uncertain, recent animal work suggests that stress may promote susceptibility to AD pathology by activating tau kinases and inducing tau phosphorylation (tau-P). Our previous findings indicate the differential involvement of corticotropin-releasing factor receptor (CRFR) types 1 and 2 in regulating tau-P in the hippocampus induced by acute restraint, an emotional stressor.

View Article and Find Full Text PDF