98%
921
2 minutes
20
Patients with drug-refractory heart failure can greatly benefit from cardiac resynchronization therapy (CRT). A CRT device can resynchronize the contractions of the left ventricle (LV) leading to reduced mortality. Unfortunately, 30%-50% of patients do not respond to treatment when assessed by objective criteria such as cardiac remodeling. A significant contributing factor is the suboptimal placement of the LV lead. It has been shown that placing this lead away from scar and at the point of latest mechanical activation can improve response rates. This paper presents a comprehensive and highly automated system that uses scar and mechanical activation to plan and guide CRT procedures. Standard clinical preoperative magnetic resonance imaging is used to extract scar and mechanical activation information. The data are registered to a single 3-D coordinate system and visualized in novel 2-D and 3-D American Heart Association plots enabling the clinician to select target segments. During the procedure, the planning information is overlaid onto live fluoroscopic images to guide lead deployment. The proposed platform has been used during 14 CRT procedures and validated on synthetic, phantom, volunteer, and patient data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2017.2720158 | DOI Listing |
ACS Sens
September 2025
Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia with multiple clinical manifestations and complications, such as cardiovascular disease, kidney dysfunction, retinal impairment, and peripheral neuropathy. Continuous and minimally invasive glucose monitoring is essential for effective DM management. Microneedles (MNs)-based sensing platforms offer a promising solution; however, conventional polymeric MNs suffer from limited electrochemical sensitivity due to their insufficient electroactive surface area and inefficient loading of catalytic and enzymatic components.
View Article and Find Full Text PDFSmall
September 2025
School of Mechanical Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.
View Article and Find Full Text PDFMater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFBiomed Rep
November 2025
Neurology Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam 32253-3202, Saudi Arabia.
Endovascular mechanical thrombectomy (MT) is a recommended treatment for acute ischemic stroke due to large vessel occlusion (LVO). The objective of the present study was to evaluate the impact of vascular risk factors on the outcome of MT outcomes in patients with stroke with LVO and to determine the prevalence of structural epilepsy in these patients. This was a retrospective cohort study involving patients with stroke between 20 and 80 years of age with LVO who underwent MT.
View Article and Find Full Text PDF