98%
921
2 minutes
20
The extracellular matrix (ECM) is a complex meshwork of insoluble fibrillar proteins and signaling factors interacting together to provide architectural and instructional cues to the surrounding cells. Alterations in ECM organization or composition and excessive ECM deposition have been observed in diseases such as fibrosis, cardiovascular diseases, and cancer. We provide here optimized protocols to solubilize ECM proteins from normal or tumor tissues, digest the proteins into peptides, analyze ECM peptides by mass spectrometry, and interpret the mass spectrometric data. In addition, we present here two novel R-script-based web tools allowing rapid annotation and relative quantification of ECM proteins, peptides, and intensity/abundance in mass spectrometric data output files. We illustrate this protocol with ECMs obtained from two pairs of tissues, which differ in ECM content and cellularity: triple-negative breast cancer and adjacent mammary tissue, and omental metastasis from high-grade serous ovarian cancer and normal omentum. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD005554.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078728 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.7b00191 | DOI Listing |
Front Microbiol
August 2025
College of Life Sciences, Hebei University, Baoding, China.
Introduction: The Zika virus (ZIKV) envelope (E) protein is critical for viral replication and host interactions. Although glycosylation of the E protein is known to influence viral infectivity and immune evasion, the specific functional roles of E protein glycosylation in ZIKV infectivity in mosquito cells remain unclear.
Methods: In this study, we generated a deglycosylation mutant ZIKV with a T156I substitution in the E protein and investigated its effects on viral replication and viral-host interactions in mosquito C6/36 cells.
Front Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
In the cardiovascular system, elastic fibres exert a fundamental role providing the long-range elasticity required for physiological functions. Elastic fibres are complex in composition and structure containing, in addition to elastin, a wide range of matrix components, such as microfibrillar proteins, calcium-binding proteins and glycosaminoglycans. Changes in composition and/or structure can affect the biomechanics of the tissue as well as the intrinsic affinity of elastin for Ca ions.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
September 2025
College of Pharmacy, National University of Science and Technology, Muscat, Oman.
Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges.
View Article and Find Full Text PDFWound Repair Regen
September 2025
Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.
View Article and Find Full Text PDF