Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is a neurodegenerative movement disorder, which affects approximately 1-2% of the population over 60years of age. Current treatments for PD are symptomatic, and the pathology of the disease continues to progresses over time until palliative care is required. Mitochondria are key players in the pathology of PD. Genetic and post mortem studies have shown a large number of mitochondrial abnormalities in the substantia nigra pars compacta (SNc) of the parkinsonian brain. Furthermore, physiologically, mitochondria of nigral neurons are constantly under unusually high levels of metabolic stress because of the excitatory properties and architecture of these neurons. The protein deacetylase, Sirtuin 3 (SIRT3) reduces the impact subcellular stresses on mitochondria, by stabilising the electron transport chain (ETC), and reducing oxidative stress. We hypothesised that viral overexpression of myc-tagged SIRT3 (SIRT3-myc) would slow the progression of PD pathology, by enhancing the functional capacity of mitochondria. For this study, SIRT3-myc was administered both before and after viral induction of parkinsonism with the AAV-expressing mutant (A53T) α-synuclein. SIRT3-myc corrected behavioural abnormalities, as well as changes in striatal dopamine turnover. SIRT3-myc also prevented degeneration of dopaminergic neurons in the SNc. These effects were apparent, even when SIRT3-myc was transduced after the induction of parkinsonism, at a time point when cell stress and behavioural abnormalities are already observed. Furthermore, in an isolated mitochondria nigral homogenate prepared from parkinsonian SIRT3-myc infected animals, SIRT3 targeted the mitochondria, to reduce protein acetylation levels. Our results demonstrate that transduction of SIRT3 has the potential to be an effective disease-modifying strategy for patients with PD. This study also provides potential mechanisms for the protective effects of SIRT3-myc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2017.06.009DOI Listing

Publication Analysis

Top Keywords

mitochondria nigral
8
induction parkinsonism
8
behavioural abnormalities
8
sirt3-myc
7
mitochondria
6
sirtuin rescues
4
neurons
4
rescues neurons
4
neurons stabilisation
4
stabilisation mitochondrial
4

Similar Publications

Imbalanced mitochondrial dynamics in human PD and α-synuclein mouse brains.

Neurobiol Dis

August 2025

College of Arts and Sciences, Florida International University, Miami, FL, United States of America; Department of Environmental Health Sciences, Florida International University, Miami, FL, United States of America; Biomolecular Sciences Institute, Florida International University, Miami, FL, Unite

Emerging studies have shown that dysregulation in mitochondrial dynamics has a major negative impact on mitochondria. Partial genetic and pharmacological inhibition of the mitochondrial fission dynamin-related protein 1 (DRP1) has been demonstrated to be beneficial in models of neurodegenerative disorders, including Parkinson's disease (PD). However, the expression of DRP1 and other mitochondrial fission/fusion mediators have not been investigated in the brains of Parkinson's patients.

View Article and Find Full Text PDF

Mitochondrial dysfunction and oxidative stress are central to the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's and Huntington's diseases. Neurons, particularly dopaminergic (DAergic) ones, are highly vulnerable to mitochondrial stress; however, the cellular and molecular mechanisms underlying this vulnerability remain poorly understood. Previously, we demonstrated that protein kinase C delta (PKCδ) is highly expressed in DAergic neurons and mediates apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a major pathogenic mechanism in Parkinson's disease (PD). Emerging studies have shown that dysregulation in mitochondrial dynamics (fission/fusion/movement) has a major negative impact on mitochondria - both morphologically and functionally. Partial genetic deletion and pharmacological inhibition of the mitochondrial fission dynamin-related protein 1 (Drp1) have been demonstrated to be beneficial in experimental models of PD.

View Article and Find Full Text PDF

Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress.

Antioxidants (Basel)

November 2024

Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain.

A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons.

View Article and Find Full Text PDF

Recent studies indicated that the dysregulation of mitochondria-associated endoplasmic reticulum membrane (MAM) could be a significant hub in the pathogenesis of Parkinson's disease (PD). However, little has been known about how MAM altered in PD. This study was aimed to observe morphological changes and analyze proteomic profiles of MAM in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models.

View Article and Find Full Text PDF