Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temporal focusing (TF) microscopy is a wide-field two-photon excitation fluorescence (2PEF) microscopy technique, the optical sectioning capability of which is lower than that of point-scanning 2PEF microscopy. Here we demonstrate TF microscopy using three-photon excitation fluorescence (3PEF), which enhances the optical sectioning capability. As an excitation light source for the 3PEF, we developed an Yb-fiber chirped pulse amplifier, which produces 92-fs 9.0-μJ 1060-nm pulses at a repetition rate of 200 kHz. The optical sectioning capability was improved by a factor of 1.3 compared with that of 2PEF-TF microscopy. We also demonstrate dual-color imaging with both 2PEF and 3PEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480430PMC
http://dx.doi.org/10.1364/BOE.8.002796DOI Listing

Publication Analysis

Top Keywords

excitation fluorescence
12
optical sectioning
12
sectioning capability
12
temporal focusing
8
focusing microscopy
8
microscopy three-photon
8
three-photon excitation
8
yb-fiber chirped
8
chirped pulse
8
pulse amplifier
8

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

Improved rotational characterization of the E3Σ1+(63S1) Rydberg state of CdAr van der Waals diatom: Excitation of single-isotopologue and J-level population distribution.

J Chem Phys

September 2025

Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.

An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.

View Article and Find Full Text PDF