98%
921
2 minutes
20
Urinary mRNA analysis with three-gene set (18S rRNA, CD3ε, and IP-10) has been suggested as a non-invasive biomarker of acute rejection (AR) in kidney transplant recipients using quantitative real-time PCR (qPCR). Application of droplet digital PCR (ddPCR), which has been suggested to provide higher sensitivity, accuracy, and absolute quantification without standard curves, could be a useful method for the quantifying low concentration of urinary mRNA. We investigated the urinary expression of these three genes in Korean patients with kidney transplantation and also evaluated the usefulness of ddPCR. 90 urine samples were collected at time of allograft biopsy in kidney recipients (n = 67) and from patients with stable renal function more than 10 years (n = 23). Absolute quantification with both PCR system showed significant higher mRNA levels of CD3ε and IP-10 in AR patients compared with stable transplants (STA), but there was no difference in 18S rRNA expression across the patient groups. To evaluate discrimination between AR and STA, ROC curve analyses of CTOT-4 formula yielded area under the curve values of 0.72 (95% CI 0.60-0.83) and 0.77 (95% CI 0.66-0.88) for qPCR and ddPCR, respectively. However, 18S normalization of absolute quantification and relative quantification with 18S showed better discrimination of AR from STA than those of the absolute method. Our data indicate that ddPCR system without standard curve would be useful to determine the absolute quantification of urinary mRNA from kidney transplant recipients. However, comparative method also could be useful and convenient in both qPCR and ddPCR analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487057 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180045 | PLOS |
Gen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Electrical & Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea.
Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.
Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.
Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFClin Transplant Res
September 2025
Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea.
Background: Calcineurin inhibitor (CNI) toxicity is a significant cause of graft dysfunction in kidney transplant recipients, yet distinguishing it from acute rejection (AR) and acute tubular necrosis (ATN) remains challenging. This study investigated the use of urinary mRNA biomarkers as a noninvasive tool for identifying CNI toxicity.
Methods: We retrospectively enrolled 110 kidney transplant recipients and classified them into four groups based on pathological findings: stable graft function (n=35), CNI toxicity (n=25), AR (n=30), and ATN (n=20).
Drug Dev Res
September 2025
Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
The aim of this study was to establish a humanized immune system model in severe combined immunodeficient (SCID) mice, assess dendritic cell (DC) phenotype, and evaluate the therapeutic efficacy of a DC-based vaccine in a bladder cancer model. Bladder cancer was induced in SCID mice by injection of T24 cells, followed by human peripheral blood leukocyte (hu-PBL) inoculation to reconstitute the human immune system. DCs were generated in vitro by culturing hu-PBL for 5 days and matured on the eighth day.
View Article and Find Full Text PDF