The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

Semin Cell Dev Biol

Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. Electronic address:

Published: October 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2017.06.011DOI Listing

Publication Analysis

Top Keywords

circadian system
16
cell cycle
12
circadian rhythms
12
circadian
9
ageing
5
rhythms
5
clock ticking
4
ticking ageing
4
ageing circadian
4
system
4

Similar Publications

This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.

View Article and Find Full Text PDF

Transportation Noise and Cardiovascular Health: Evidence, Mechanisms, and Policy Imperatives.

Anatol J Cardiol

September 2025

Danish Cancer Institute, Danish Cancer Society, Denmark;Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.

Environmental noise, particularly from road, rail, and aircraft traffic, is now firmly recognized as a widespread risk factor for cardiovascular disease. About 1 in 3 Europeans is exposed to chronic noise exposure above the guideline thresholds recommended by the World Health Organization (WHO), thus contributing substantially to cardiovascular morbidity and mortality. Robust evidence from recent meta-analyses links transportation noise to ischemic heart disease, heart failure, stroke, hypertension, and type 2 diabetes mellitus.

View Article and Find Full Text PDF

has been a pioneering model system for investigations into the genetic bases of behaviour. Studies of circadian activity were some of the first behaviours investigated in flies. The Activity Monitoring (DAM) system by TriKinetics played a key role in establishing the fundamental feedback loop of the circadian clock.

View Article and Find Full Text PDF

The ontogeny of circadian clock gene expression during mouse fetal development.

Biochem Biophys Rep

December 2025

Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.

The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.

View Article and Find Full Text PDF

Light does not phase shift the circadian clock of subcutaneous adipose tissue in vitro.

NPJ Biol Timing Sleep

September 2025

Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.

The retinal photopigment melanopsin is also expressed in subcutaneous white adipose tissue (scWAT). Through melanopsin, light can modulate scWAT metabolism, but its impact on circadian phase is unclear. In vitro exposure of murine scWAT to bright light at different times over 24 h did not elicit phase shifts, unlike the response to corticosterone.

View Article and Find Full Text PDF