Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We developed novel nucleoside-based topoisomerase II selective inhibitors and showed that small structural units, such as catechols, are essential for DNA topoisomerase II inhibitory activity. Moreover, nucleoside analogues containing TBS and 1,3-dithian moieties had potent and selective DNA topoisomerase II inhibitory activities. In further experiments, compound 25b having a beta configuration of the thymine moiety showed relatively strong growth inhibitory activity against cancer cell lines, and was more potent against all cancer cell lines than compound 26b, which carries a thymine moiety in the alpha configuration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.06.001DOI Listing

Publication Analysis

Top Keywords

dna topoisomerase
12
topoisomerase inhibitory
8
inhibitory activity
8
thymine moiety
8
cancer cell
8
cell lines
8
design synthesis
4
synthesis evaluation
4
evaluation dna
4
topoisomerase
4

Similar Publications

Background: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.

View Article and Find Full Text PDF

Herein, and based on the pharmacophoric features of doxorubicin (Dox); 133 steroids were screened to assess their ability to act as TOP II inhibitors for the discovery of those with promising anticancer activity. The cytotoxic inhibitory concentration 50 (IC) of the investigated steroids was determined against H1299, CaCo2, MDA-MB-468, and FaDu cancer cell lines and compared to Dox. Fluticasone propionate and fusidic acid exhibited the most potent antiproliferative effect against the MDA-MB-468 with IC values of 10.

View Article and Find Full Text PDF

Structural basis of the RNA-mediated Retron-Eco2 oligomerization.

Cell Discov

September 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.

In the evolutionary arms race between bacteria and viruses, retrons have emerged as distinctive antiphage defense systems. Here, we elucidate the structure and function of Retron-Eco2, which comprises a non-coding RNA (ncRNA) that encodes multicopy single-stranded DNA (msDNA, a DNA‒RNA hybrid) and a fusion protein containing a reverse transcriptase (RT) domain and a topoisomerase-primase-like (Toprim) effector domain. The Eco2 msDNA and RT-Toprim fusion protein form a 1:1 stoichiometric nucleoprotein complex that further assembles into a trimer (msDNA:RT-Toprim ratio of 3:3) with a distinctive triangular configuration.

View Article and Find Full Text PDF

Bacterial gyrase, unique among type II topoisomerases, introduces negative supercoils into DNA. Mechanistic details of gyrase still must be elucidated because of the complexity of the process and the difficulty in visualizing it. Specifically, the interplay among base sequence, local DNA deformability, and global DNA topology for gyrase site selection is unclear.

View Article and Find Full Text PDF

Ciprofloxacin (CFX) is a broad-spectrum antibiotic belonging to the fluoroquinolone class, widely used to treat bacterial infections by inhibiting bacterial DNA replication. Ferroptosis, a form of regulated cell death, is characterized by lipid peroxidation on cellular and organelle membranes. Our previous studies demonstrated that ciprofloxacin inhibits erastin-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) protein stability.

View Article and Find Full Text PDF