Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization.

J Colloid Interface Sci

UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Material Physics, Agoralaan, 3590 Diepenbeek, Belgium; IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium. Electronic address:

Published: October 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conjugated polymers are versatile bio-imaging probes as their optical properties can be readily fine-tuned. In this manuscript, fluorescent conjugated polymer nanoparticles are fabricated using three different poly(p-phenylene ethynylene) (PPE) derivatives. The polymers have the same backbone but carry different side chains, i.e. regular octyloxy substituents, half of the octyloxy chains azide terminated, or azide functionalized tetraethylene glycol (TEG) moieties. The azide groups are specifically chosen to allow coupling of (bio)molecules to the surface of the particles using straightforward azide-alkyne click reactions, enabling different bioconjugation and targeting strategies. The influence of the functionalization pattern on the size and optical properties of the nanoparticles is studied using transmission electron microscopy, dynamic light scattering, UV-Vis absorption and fluorescence spectroscopy. The polymer containing the azide functionalized TEG chains affords larger particles, which can be attributed to hydration of the outer layer of the more hydrophilic polymer particles. However, this does not impact the fluorescence quantum yield. The two azide functionalized PPE particles exhibit the highest quantum yields (13%). Despite the presence of azide groups on two of the three materials, all particles are biocompatible and taken up by A549 human lung carcinoma cells. A proof of concept click reaction was performed as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.05.072DOI Listing

Publication Analysis

Top Keywords

optical properties
12
azide functionalized
12
polyp-phenylene ethynylene
8
bio-imaging probes
8
azide groups
8
azide
6
particles
5
tuning optical
4
properties polyp-phenylene
4
ethynylene nanoparticles
4

Similar Publications

Photocatalytic cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes to access 3-(2,2,2-trifluoroethyl)-3-indoles.

Chem Commun (Camb)

September 2025

College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.

A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.

View Article and Find Full Text PDF

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF

Molecules with an inverted singlet-triplet gap (Δ = - < 0) hold potential for optoelectronic applications as OLEDs and photocatalysis. Despite growing interest, no single-molecule emission from a chiral dye with an inverted gap has been reported, and only one case has shown such emission from supramolecular aggregates. Here, we present the first circularly polarized light emission (CPL) from a chiral molecule exhibiting an inverted singlet-triplet gap.

View Article and Find Full Text PDF

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF