Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.

Methods: The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed.

Results: The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed.

Conclusion: This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

Download full-text PDF

Source
http://dx.doi.org/10.2340/16501977-2229DOI Listing

Publication Analysis

Top Keywords

brain-machine interfaces
12
devices brain-machine
8
robotic-aided hand
8
hand physiotherapy
8
hand
5
robotic devices
4
brain-machine
4
interfaces hand
4
rehabilitation
4
hand rehabilitation
4

Similar Publications

Machine learning based classification of imagined speech electroencephalogram data from the amplitude and phase spectrum of frequency domain EEG signal.

Biomed Phys Eng Express

September 2025

electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.

Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.

View Article and Find Full Text PDF

Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition.

View Article and Find Full Text PDF

The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.

View Article and Find Full Text PDF

Speech brain-computer interfaces (BCIs) offer a solution for those affected by speech impairments by decoding brain activity into speech. Current neuroprosthetics focus on the motor cortex, which might not be suitable for all patient populations. We investigate potential alternative targets for a speech BCI across a brain-wide distribution.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable communication between individuals and computers or other assistive devices by decoding brain activity, thereby reconstructing speech and motor functions for patients with neurological disorders. This study presents a high-resolution micro-electrocorticography (µECoG) BCI based on a flexible, high-density µECoG electrode array, capable of chronically stable and real-time motor decoding. Leveraging micro-nano manufacturing technology, the µECoG BCI achieves a 64-fold increase in electrode density compared to conventional clinical electrode arrays, enhancing spatial resolution while featuring scalability.

View Article and Find Full Text PDF