Signal enhancement and low oxidation potentials for miniaturized ECL biosensors via N-butyldiethanolamine.

Analyst

Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany. and Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.

Published: July 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present studies on ruthenium-based electrochemiluminescence (ECL) focusing on conditions supporting signal enhancement and low oxidation potentials. Low oxidation potentials (LOPs) are especially attractive for miniaturized ECL biosensors, as microfabricated electrodes tend to detach from their support when used with high currents and operated at high potentials. Furthermore, high potentials or current densities can lead to damage of typical biosensor surface coatings and biological probes. The possibility of generating LOP ECL signals at a potential below 900 mV was therefore studied for Ru(bpy) with two typical coreactants, i.e. 2-(dibutylamino)ethanol (DBAE) and tripropylamine (TPA), as well as with the tertiary amine N-butyldiethanolamine (NBEA). Furthermore, the effect of buffer components and pH values on ECL signal generation was investigated. We could show a significant LOP ECL signal for NBEA. We found that Tris buffer, with its ability to form complexes with transition metal ions, has a positive influence on this ECL signal in terms of signal strength and LOP capabilities. Specifically, at basic pH values significant increases in ECL signals were observed at 900 mV and at 1.2 V. In fact, the ECL signal at 1.2 V was three times higher than the signal observed in phosphate buffer at a pH of 7, and it was thirty times higher than the ECL signal for TPA under these conditions. The LOP signal for NBEA in Tris buffer at pH 8.5 was similar to the signal obtained for TPA in phosphate buffer at pH 8.5 but three times higher than for TPA at pH 7.0. Interestingly, the coreactant DBAE was neither significantly influenced by the buffer system or pH nor did it present a valuable LOP ECL signal. Finally, it was found that high peak currents in cyclic voltammograms are not the indicators for high ECL signals, which should be obvious because the ECL mechanism requires more complex electron transfers. Overall, the standard TPA ECL at 1.2 V in phosphate buffer at pH 7.0 can successfully be replaced by NBEA ECL at 900 mV in Tris at pH 8.5 providing significantly higher signals accompanied by more gentle electrochemical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7an00261kDOI Listing

Publication Analysis

Top Keywords

ecl signal
24
ecl
15
signal
12
low oxidation
12
oxidation potentials
12
lop ecl
12
ecl signals
12
times higher
12
phosphate buffer
12
signal enhancement
8

Similar Publications

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF

Peptide Sequence Modulating the Analytical Performance of Electrogenerated Chemiluminescence Peptide-Based Biosensors for Matrix Metalloproteinase 2.

Anal Chem

September 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.

View Article and Find Full Text PDF

P-Doped Cu-N-C Single-Atom Catalysts Boost Cathodic Electrochemiluminescence of Luminol for MicroRNA-320d Detection.

Anal Chem

September 2025

Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.

View Article and Find Full Text PDF

Effects of fermentation, ripening and storage on endocannabinoids and endocannabinoid-like compounds in different cheeses.

Food Chem

September 2025

Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey. Electronic address:

Endocannabinoids (ECs) and endocannabinoid-like (ECL) compounds are biologically active lipids derived from a range of fatty acids. This study aims to assess the levels and profile of ECs/ECL compounds across various cheeses, focusing particularly on how different processing steps such as fermentation, ripening, and storage affect their concentrations. Compared to commercial fresh and ripened cheeses, it was determined that ripening is of importance in shaping the profile of lipid signalling compounds.

View Article and Find Full Text PDF

Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.

View Article and Find Full Text PDF