98%
921
2 minutes
20
In animal pollinated plants, phenological shifts caused by climate change may have important ecological consequences. However, no empirical evidence exists at present on the consequences that flowering phenology shifts have on the strength of pollen limitation under experimental warming. Here, we investigated the effects of experimental warming on flowering phenology, flower density, reproductive success, and pollen limitation intensity in Caragana microphylla and evaluated whether earlier flowering phenology affected plant reproduction and the level of pollen limitation using warmed and unwarmed open top chambers in the Horqin Sandy Land of Inner Mongolia, northern China. The results of this study indicated that artificial warming markedly advanced flower phenology rather than extending the duration of the flowering. Additionally, warming was found to significantly reduce flower density which led to seed production reduction, since there were insignificant effects observed on fruit set and seed number per fruit. Experimental floral manipulations showed that warming did not affect pollen limitation. These results revealed the negative effects of advanced phenology induced by warming on flower density and reproductive output, as well as the neutral effects on reproductive success and pollen limitation intensity of long surviving plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459833 | PMC |
http://dx.doi.org/10.1038/s41598-017-03037-9 | DOI Listing |
Tree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDFSci Total Environ
September 2025
Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:
Neonicotinoid insecticides have been identified as significant contributors to the decline of pollinators. To evaluate potential exposure of pollinators to neonicotinoids in South Korea, 79 honey samples and 27 pollen samples were obtained from agricultural, mountain, and urban areas. These samples were analyzed for 17 compounds, including neonicotinoids and their metabolites using liquid chromatography coupled with mass spectrometry.
View Article and Find Full Text PDFCell
August 2025
College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Haploid induction (HI) through stress-treated microspore culture has gained significant attention for over half a century, yet the molecular mechanism underlying microspore fate transition for androgenesis remains poorly understood. Here, we demonstrate that microspore-specific expression of BABY BOOM (BBM) is sufficient to induce microspore cell fate transition and in vivo androgenesis in both tobacco and rice, effectively bypassing the requirement for stress treatment. We further identify BBM-activated Androgenesis Regulator 1 (BAR1) as a novel downstream effector of BBM that promotes microspore reprogramming.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom.
Introduction: The autogamous nature of wheat presents a significant challenge for hybrid wheat breeding, which relies on cross-pollination. To facilitate hybrid wheat production, it is essential to modify the floral morphology of wheat to promote outbreeding rather than inbreeding. While some genetic diversity for flower morphology exists within wheat, it is limited compared to the vast and largely untapped genetic variation found in its wild relatives for potentially all agronomically important traits, including flowering characteristics.
View Article and Find Full Text PDFJ Plant Res
September 2025
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-0054, Japan.
Interspecific hybrids with different genomes from their parents often result in hybrid sterility due to meiotic failure. This is a typical example of reproductive isolation that limits interspecific hybridization. Although a few progenies can be obtained in such cases, the inheritance pattern of fertility has not yet been studied in detail.
View Article and Find Full Text PDF