Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many proteins are translocated across the endoplasmic reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes. These proteins use hydrophobic signal sequences or transmembrane (TM) segments to trigger their translocation through the protein-conducting Sec61/SecY channel. Substrates are first directed to the channel by cytosolic targeting factors, which use hydrophobic pockets to bind diverse signal and TM sequences. Subsequently, these hydrophobic sequences insert into the channel, docking into a groove on the outside of the lateral gate of the channel, where they also interact with lipids. Structural data and biochemical experiments have elucidated how channel partners, the ribosome in cotranslational translocation, and the eukaryotic ER chaperone BiP or the prokaryotic cytosolic SecA ATPase in posttranslational translocation move polypeptides unidirectionally across the membrane. Structures of auxiliary components of the bacterial translocon, YidC and SecD/F, provide additional insight. Taken together, these recent advances result in mechanistic models of protein translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-cellbio-100616-060439DOI Listing

Publication Analysis

Top Keywords

protein translocation
8
signal sequences
8
translocation
5
channel
5
structural mechanistic
4
mechanistic insights
4
insights protein
4
translocation proteins
4
proteins translocated
4
translocated endoplasmic
4

Similar Publications

Background: Major depressive disorder (MDD) is associated with neuro-immune - metabolic - oxidative (NIMETOX) pathways.

Aims: To examine the connections among NIMETOX pathways in outpatient MDD (OMDD) with and without metabolic syndrome (MetS); and to determine the prevalence of NIMETOX aberrations in a cohort of OMDD patients.

Methods: We included 67 healthy controls and 66 OMDD patients and we assessed various NIMETOX pathways.

View Article and Find Full Text PDF

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF