98%
921
2 minutes
20
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454457 | PMC |
http://dx.doi.org/10.1038/ncomms15269 | DOI Listing |
Bioorg Chem
September 2025
Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France. Electronic address:
In the field of theranostics, triaminophenaziniums are promising molecules due to their intrinsic properties such as an absorbance beyond 500 nm associated with large molar extinction coefficients, high fluorescence quantum yields, as well as phototoxicity. This study explored how three triaminophenazinium salts relate in structure and activity, highlighting their potential as theranostic agents. The nature of the moiety in position 2 of the dyes was varied from H, to -CH or -Bu.
View Article and Find Full Text PDFChem Soc Rev
September 2025
State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, environments and Materials, Guangxi University, Nanning 530004, China.
To date, Cu(I)-based metal halides with high photoluminescence quantum yields (PLQYs) have primarily focused on their zero-dimensional or one-dimensional structures, significantly reflecting the charge or carrier localization. Designing two-dimensional (2D) hybrid copper(I) halides remains a significant challenge for optoelectronic applications, particularly in simultaneously achieving high PLQY and exceptional structural stability. Here, we report a novel series of 2D hybrid Cu(I) halides, (TDMP)CuX (TDMP = 2,5-dimethylpiperazine and X = Cl, Br), synthesized through simple solution-cooling crystallization methods.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.
View Article and Find Full Text PDFSmall
September 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
III-V semiconductor nanocrystals (NCs) have emerged as a benign alternative to II-VI and IV-VI NCs, which are restricted due to the toxicity of the comprising elements. While InP NCs advanced significantly, the development of infrared-emitting InAs NCs has been relatively slow-paced. This is due to the synthetic challenges arising from the highly covalent bonding in InAs and the limited range of available arsenic sources.
View Article and Find Full Text PDF