98%
921
2 minutes
20
LC-HR-QTOF-MS recently has become a commonly used approach for the analysis of complex samples. However, identification of small organic molecules in complex samples with the highest level of confidence is a challenging task. Here we report on the implementation of a two stage algorithm for LC-HR-QTOF-MS datasets. We compared the performances of the two stage algorithm, implemented via NIVA_MZ_Analyzer™, with two commonly used approaches (i.e. feature detection and XIC peak picking, implemented via UNIFI by Waters and TASQ by Bruker, respectively) for the suspect analysis of four influent wastewater samples. We first evaluated the cross platform compatibility of LC-HR-QTOF-MS datasets generated via instruments from two different manufacturers (i.e. Waters and Bruker). Our data showed that with an appropriate spectral weighting function the spectra recorded by the two tested instruments are comparable for our analytes. As a consequence, we were able to perform full spectral comparison between the data generated via the two studied instruments. Four extracts of wastewater influent were analyzed for 89 analytes, thus 356 detection cases. The analytes were divided into 158 detection cases of artificial suspect analytes (i.e. verified by target analysis) and 198 true suspects. The two stage algorithm resulted in a zero rate of false positive detection, based on the artificial suspect analytes while producing a rate of false negative detection of 0.12. For the conventional approaches, the rates of false positive detection varied between 0.06 for UNIFI and 0.15 for TASQ. The rates of false negative detection for these methods ranged between 0.07 for TASQ and 0.09 for UNIFI. The effect of background signal complexity on the two stage algorithm was evaluated through the generation of a synthetic signal. We further discuss the boundaries of applicability of the two stage algorithm. The importance of background knowledge and experience in evaluating the reliability of results during the suspect screening was evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2017.04.040 | DOI Listing |
Ren Fail
December 2025
Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
This study aimed to develop a predictive model and construct a graded nomogram to estimate the risk of severe acute kidney injury (AKI) in patients without preexisting kidney dysfunction undergoing liver transplantation (LT). Patients undergoing LT between January 2022 and June 2023 were prospectively screened. Severe AKI was defined as Kidney Disease: Improving Global Outcomes stage 3.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Neoadjuvant immunochemotherapy (nICT) has demonstrated significant potential in improving pathological response rates and survival outcomes for patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, substantial interindividual variability in therapeutic outcomes highlights the urgent need for more precise predictive tools to guide clinical decision-making. Traditional biomarkers remain limited in both predictive performance and clinical feasibility.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Mechanical and Industrial Engineering, Faculty of Engineering, University of Toronto, Toronto, ON, Canada.
Background: Total knee and hip arthroplasty (TKA and THA) are among the most performed elective procedures. Rising demand and the resource-intensive nature of these procedures have contributed to longer wait times despite significant health care investment. Current scheduling methods often rely on average surgical durations, overlooking patient-specific variability.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2025
The Institute of Cancer Research, London, UK. Electronic address:
Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.
View Article and Find Full Text PDFRev Bras Enferm
September 2025
Universidade do Estado do Amazonas. Manaus, Amazonas, Brazil.
Objectives: to develop a mobile application prototype using Artificial Intelligence (AI) to predict and support the diagnosis of pulmonary tuberculosis in children - TB Kids.
Methods: technological development research of the prototyping type, based on the Rational Unified Process model and its four stages: conception, elaboration, construction and transition. The development of the TB Kids prototype took place from November 2022 to July 2023.